aboutsummaryrefslogtreecommitdiffstats
path: root/doc/not-implemented.tex
diff options
context:
space:
mode:
authorMattias Andrée <maandree@kth.se>2016-05-13 20:40:05 +0200
committerMattias Andrée <maandree@kth.se>2016-05-13 20:40:05 +0200
commitd067895614aed8572f40da22ccea50b781cfbc0d (patch)
tree88b1645f1de51c8e5d5301c7e88f7bb6391f18b1 /doc/not-implemented.tex
parentzptest: if n is even, let the witness be 2 (diff)
downloadlibzahl-d067895614aed8572f40da22ccea50b781cfbc0d.tar.gz
libzahl-d067895614aed8572f40da22ccea50b781cfbc0d.tar.bz2
libzahl-d067895614aed8572f40da22ccea50b781cfbc0d.tar.xz
On primality test, and style
Signed-off-by: Mattias Andrée <maandree@kth.se>
Diffstat (limited to 'doc/not-implemented.tex')
-rw-r--r--doc/not-implemented.tex18
1 files changed, 9 insertions, 9 deletions
diff --git a/doc/not-implemented.tex b/doc/not-implemented.tex
index ac18212..f30dd8b 100644
--- a/doc/not-implemented.tex
+++ b/doc/not-implemented.tex
@@ -60,7 +60,7 @@ extgcd(z_t bézout_coeff_1, z_t bézout_coeff_2, z_t gcd
\label{sec:Least common multiple}
\( \displaystyle{
- \mbox{lcm}(a, b) = {\lvert a \cdot b \rvert \over \mbox{gcd}(a, b)}
+ \mbox{lcm}(a, b) = \frac{\lvert a \cdot b \rvert}{\mbox{gcd}(a, b)}
}\)
@@ -233,7 +233,7 @@ The resulting algorithm can be expressed
1 & \textrm{if}~ n = 0 \\
\textrm{undefined} & \textrm{otherwise}
\end{array} \right . =
- n! \sum_{i = 0}^n {(-1)^i \over i!}
+ n! \sum_{i = 0}^n \frac{(-1)^i}{i!}
}\)
@@ -286,7 +286,7 @@ The resulting algorithm can be expressed
\label{sec:Raising factorial}
\( \displaystyle{
- x^{(n)} = {(x + n - 1)! \over (x - 1)!}
+ x^{(n)} = \frac{(x + n - 1)!}{(x - 1)!}
}\), undefined for $n < 0$.
@@ -294,7 +294,7 @@ The resulting algorithm can be expressed
\label{sec:Falling factorial}
\( \displaystyle{
- (x)_n = {x! \over (x - n)!}
+ (x)_n = \frac{x!}{(x - n)!}
}\), undefined for $n < 0$.
@@ -334,9 +334,9 @@ $\Gamma(n) = (n - 1)!$, undefined for $n \le 0$.
\label{sec:Binomial coefficient}
\( \displaystyle{
- {n \choose k} = {n! \over k!(n - k)!}
- = {1 \over (n - k)!} \prod_{i = k + 1}^n i
- = {1 \over k!} \prod_{i = n - k + 1}^n i
+ \binom{n}{k} = \frac{n!}{k!(n - k)!}
+ = \frac{1}{(n - k)!} \prod_{i = k + 1}^n i
+ = \frac{1}{k!} \prod_{i = n - k + 1}^n i
}\)
@@ -344,7 +344,7 @@ $\Gamma(n) = (n - 1)!$, undefined for $n \le 0$.
\label{sec:Catalan number}
\( \displaystyle{
- C_n = \left . {2n \choose n} \middle / (n + 1) \right .
+ C_n = \left . \binom{2n}{n} \middle / (n + 1) \right .
}\)
@@ -352,7 +352,7 @@ $\Gamma(n) = (n - 1)!$, undefined for $n \le 0$.
\label{sec:Fuss-Catalan number} % not en dash
\( \displaystyle{
- A_m(p, r) = {r \over mp + r} {mp + r \choose m}
+ A_m(p, r) = \frac{r}{mp + r} \binom{mp + r}{m}
}\)