From d067895614aed8572f40da22ccea50b781cfbc0d Mon Sep 17 00:00:00 2001 From: Mattias Andrée Date: Fri, 13 May 2016 20:40:05 +0200 Subject: On primality test, and style MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Mattias Andrée --- doc/not-implemented.tex | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) (limited to 'doc/not-implemented.tex') diff --git a/doc/not-implemented.tex b/doc/not-implemented.tex index ac18212..f30dd8b 100644 --- a/doc/not-implemented.tex +++ b/doc/not-implemented.tex @@ -60,7 +60,7 @@ extgcd(z_t bézout_coeff_1, z_t bézout_coeff_2, z_t gcd \label{sec:Least common multiple} \( \displaystyle{ - \mbox{lcm}(a, b) = {\lvert a \cdot b \rvert \over \mbox{gcd}(a, b)} + \mbox{lcm}(a, b) = \frac{\lvert a \cdot b \rvert}{\mbox{gcd}(a, b)} }\) @@ -233,7 +233,7 @@ The resulting algorithm can be expressed 1 & \textrm{if}~ n = 0 \\ \textrm{undefined} & \textrm{otherwise} \end{array} \right . = - n! \sum_{i = 0}^n {(-1)^i \over i!} + n! \sum_{i = 0}^n \frac{(-1)^i}{i!} }\) @@ -286,7 +286,7 @@ The resulting algorithm can be expressed \label{sec:Raising factorial} \( \displaystyle{ - x^{(n)} = {(x + n - 1)! \over (x - 1)!} + x^{(n)} = \frac{(x + n - 1)!}{(x - 1)!} }\), undefined for $n < 0$. @@ -294,7 +294,7 @@ The resulting algorithm can be expressed \label{sec:Falling factorial} \( \displaystyle{ - (x)_n = {x! \over (x - n)!} + (x)_n = \frac{x!}{(x - n)!} }\), undefined for $n < 0$. @@ -334,9 +334,9 @@ $\Gamma(n) = (n - 1)!$, undefined for $n \le 0$. \label{sec:Binomial coefficient} \( \displaystyle{ - {n \choose k} = {n! \over k!(n - k)!} - = {1 \over (n - k)!} \prod_{i = k + 1}^n i - = {1 \over k!} \prod_{i = n - k + 1}^n i + \binom{n}{k} = \frac{n!}{k!(n - k)!} + = \frac{1}{(n - k)!} \prod_{i = k + 1}^n i + = \frac{1}{k!} \prod_{i = n - k + 1}^n i }\) @@ -344,7 +344,7 @@ $\Gamma(n) = (n - 1)!$, undefined for $n \le 0$. \label{sec:Catalan number} \( \displaystyle{ - C_n = \left . {2n \choose n} \middle / (n + 1) \right . + C_n = \left . \binom{2n}{n} \middle / (n + 1) \right . }\) @@ -352,7 +352,7 @@ $\Gamma(n) = (n - 1)!$, undefined for $n \le 0$. \label{sec:Fuss-Catalan number} % not en dash \( \displaystyle{ - A_m(p, r) = {r \over mp + r} {mp + r \choose m} + A_m(p, r) = \frac{r}{mp + r} \binom{mp + r}{m} }\) -- cgit v1.2.3-70-g09d2