1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
// -*- mode: c, coding: utf-8 -*-
/**
* 𝓞(n³) implementation of the Hungarian algorithm
*
* Copyright (C) 2011 Mattias Andrée
*
* This program is free software. It comes without any warranty, to
* the extent permitted by applicable law. You can redistribute it
* and/or modify it under the terms of the Do What The Fuck You Want
* To Public License, Version 2, as published by Sam Hocevar. See
* http://sam.zoy.org/wtfpl/COPYING for more details.
*/
#include <stdio.h>
#include <stdlib.h>
#define cell long
#define CELL_STR "%li"
#define llong long long
#define byte char
#define boolean long
#define null 0
#define true 1
#define false 0
//new cell[X]
#define new_cells(X) new_longs(X)
//new boolean[X]
#define new_booleans(X) new_longs(X)
//new byte[X]
#define new_bytes(X) malloc(X)
//new llong[X]
#define new_llongs(X) malloc((X) << 3)
//new long[X]
#if !(defined __LP64__ || defined __LLP64__)
#define new_longs(X) malloc((X) << 2) /*32-bit*/
#else
#define new_longs(X) malloc((X) << 3) /*64-bit*/
#endif
//new float[X]
#define new_floats(X) malloc((X) << 2)
//new double[X]
#define new_doubles(X) malloc((X) << 3)
//new ?[][X]
#define new_arrays(X) new_longs(X)
#ifdef DEBUG
#define debug(X) fprintf(stderr, "\e[31m%s\e[m\n", X)
#else
#define debug(X)
#endif
/**
* Cell marking: none
*/
#define UNMARKED 0L
/**
* Cell marking: marked
*/
#define MARKED 1L
/**
* Cell marking: prime
*/
#define PRIME 2L
/**
* Bit set, a set of fixed number of bits/booleans
*/
typedef struct
{
/**
* The set of all limbs, a limb consist of 64 bits
*/
cell* limbs;
/**
* Singleton array with the index of the first non-zero limb
*/
long* first;
/**
* Array the the index of the previous non-zero limb for echo limb
*/
long* prev;
/**
* Array the the index of the next non-zero limb for echo limb
*/
long* next;
} BitSet;
long** kuhn_match(cell** table, long n, long m);
void kuhn_reduceRows(cell** t, long n, long m);
byte** kuhn_mark(cell** t, long n, long m);
boolean kuhn_isDone(byte** marks, boolean* colCovered, long n, long m);
long* kuhn_findPrime(cell** t, byte** marks, boolean* rowCovered, boolean* colCovered, long n, long m);
void kuhn_altMarks(byte** marks, long* altRow, long* altCol, long* colMarks, long* rowPrimes, long* prime, long n, long m);
void kuhn_addAndSubtract(cell** t, boolean* rowCovered, boolean* colCovered, long n, long m);
long** kuhn_assign(byte** marks, long n, long m);
BitSet new_BitSet(long size);
void BitSet_set(BitSet this, long i);
void BitSet_unset(BitSet this, long i);
long BitSet_any(BitSet this);
long lb(llong x);
void print(cell** t, long n, long m, long** assignment);
int main(int argc, char** argv)
{
unsigned a, d;
asm("cpuid");
asm volatile("rdtsc" : "=a" (a), "=d" (d));
srand(((llong)a) | (((llong)d) << 32LL));
long n = 10, m = 15;
long i;
cell** t = new_arrays(n);
cell** table = new_arrays(n);
long j;
if (argc < 2)
for (i = 0; i < n; i++)
{
*(t + i) = new_llongs(m);
*(table + i) = new_llongs(m);
for (j = 0; j < m; j++)
*(*(table + i) + j) = *(*(t + i) + j) = (cell)(random() & 63);
}
else
{
long x;
scanf("%li", &n);
scanf("%li", &m);
t = new_arrays(n);
table = new_arrays(n);
for (i = 0; i < n; i++)
{
*(t + i) = new_llongs(m);
*(table + i) = new_llongs(m);
for (j = 0; j < m; j++)
{
scanf(CELL_STR, &x);
*(*(table + i) + j) = *(*(t + i) + j) = x;
}
}
}
//kuhn_match(table, n, m);
printf("\nInput:\n\n");
print(t, n, m, null);
long** assignment = kuhn_match(table, n, m);
printf("\nOutput:\n\n");
print(t, n, m, assignment);
cell sum = 0;
for (i = 0; i < n; i++)
sum += *(*(t + *(*(assignment + i) + 0)) + *(*(assignment + i) + 1));
printf("\n\nSum: %li\n\n", sum);
return 0;
}
void print(cell** t, long n, long m, long** assignment)
{
long i, j;
long** assigned = new_arrays(n);
for (i = 0; i < n; i++)
{
*(assigned + i) = new_longs(m);
for (j = 0; j < m; j++)
*(*(assigned + i) + j) = 0;
}
if (assignment != null)
for (i = 0; i < n; i++)
(*(*(assigned + **(assignment + i)) + *(*(assignment + i) + 1)))++;
for (i = 0; i < n; i++)
{
printf(" ");
for (j = 0; j < m; j++)
{
if (*(*(assigned + i) + j))
printf("\e[%lim", 30 + *(*(assigned + i) + j));
printf("%5li%s\e[m ", (cell)(*(*(t + i) + j)), (*(*(assigned + i) + j) ? "^" : " "));
}
printf("\n\n");
}
}
/**
* Calculates an optimal bipartite minimum weight matching using an
* O(n³)-time implementation of The Hungarian Algorithm, also known
* as Kuhn's Algorithm. This implemention is restricted to square
* tables.
*
* @param table The table in which to perform the matching
* @param n The dimension of the table
* @return The optimal assignment, an array of row–coloumn pairs
*/
long** kuhn_match(cell** table, long n, long m)
{
long i;
/* not copying table since it will only be used once */
kuhn_reduceRows(table, n, m);
byte** marks = kuhn_mark(table, n, m);
boolean* rowCovered = new_booleans(n);
boolean* colCovered = new_booleans(m);
for (i = 0; i < n; i++)
{
*(rowCovered + i) = false;
*(colCovered + i) = false;
}
for (i = n; i < m; i++)
*(colCovered + i) = false;
long* altRow = new_longs(n * m);
long* altCol = new_longs(n * m);
long* rowPrimes = new_longs(n);
long* colMarks = new_longs(m);
long* prime;
for (;;)
{
if (kuhn_isDone(marks, colCovered, n, m))
break;
for (;;)
{
prime = kuhn_findPrime(table, marks, rowCovered, colCovered, n, m);
if (prime != null)
{
kuhn_altMarks(marks, altRow, altCol, colMarks, rowPrimes, prime, n, m);
for (i = 0; i < n; i++)
{
*(rowCovered + i) = false;
*(colCovered + i) = false;
}
for (i = n; i < m; i++)
*(colCovered + i) = false;
break;
}
kuhn_addAndSubtract(table, rowCovered, colCovered, n, m);
}
}
return kuhn_assign(marks, n, m);
}
/**
* Reduces the values on each rows so that, for each row, the
* lowest cells value is zero, and all cells' values is decrease
* with the same value [the minium value in the row].
*
* @param t The table in which to perform the reduction
* @param n The table's height
* @param m The table's width
*/
void kuhn_reduceRows(cell** t, long n, long m)
{
long i, j;
cell min;
cell* ti;
for (i = 0; i < n; i++)
{
ti = *(t + i);
min = *ti;
for (j = 1; j < m; j++)
if (min > *(ti + j))
min = *(ti + j);
for (j = 0; j < m; j++)
*(ti + j) -= min;
}
}
/**
* Create a matrix with marking of cells in the table whose
* value is zero [minimal for the row]. Each marking will
* be on an unique row and an unique column.
*
* @param t The table in which to perform the reduction
* @param n The table's height
* @param m The table's width
* @return A matrix of markings as described in the summary
*/
byte** kuhn_mark(cell** t, long n, long m)
{
long i, j;
byte** marks = new_arrays(n);
byte* marksi;
for (i = 0; i < n; i++)
{
marksi = *(marks + i) = new_bytes(m);
for (j = 0; j < m; j++)
*(marksi + j) = UNMARKED;
}
boolean* rowCovered = new_booleans(n);
boolean* colCovered = new_booleans(m);
for (i = 0; i < n; i++)
{
*(rowCovered + i) = false;
*(colCovered + i) = false;
}
for (i = 0; i < m; i++)
*(colCovered + i) = false;
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
if ((!*(rowCovered + i)) && (!*(colCovered + j)) && (*(*(t + i) + j) == 0))
{
*(*(marks + i) + j) = MARKED;
*(rowCovered + i) = true;
*(colCovered + j) = true;
}
return marks;
}
/**
* Determines whether the marking is complete, that is
* if each row has a marking which is on a unique column.
*
* @param marks The marking matrix
* @param colCovered An array which tells whether a column is covered
* @param n The table's height
* @param m The table's width
* @return Whether the marking is complete
*/
boolean kuhn_isDone(byte** marks, boolean* colCovered, long n, long m)
{
long i, j;
for (j = 0; j < m; j++)
for (i = 0; i < n; i++)
if (*(*(marks + i) + j) == MARKED)
{
*(colCovered + j) = true;
break;
}
long count = 0;
for (j = 0; j < m; j++)
if (*(colCovered + j))
count++;
return count == n;
}
/**
* Finds a prime
*
* @param t The table
* @param marks The marking matrix
* @param rowCovered Row cover array
* @param colCovered Column cover array
* @param n The table's height
* @param m The table's width
* @return The row and column of the found print, <code>null</code> will be returned if none can be found
*/
long* kuhn_findPrime(cell** t, byte** marks, boolean* rowCovered, boolean* colCovered, long n, long m)
{
long i, j;
BitSet zeroes = new_BitSet(n * n);
for (i = 0; i < n; i++)
if (!*(rowCovered + i))
for (j = 0; j < m; j++)
if ((!*(colCovered + j)) && (*(*(t + i) + j) == 0))
BitSet_set(zeroes, i * m + j);
long p, row, col;
boolean markInRow;
for (;;)
{
p = BitSet_any(zeroes);
if (p < 0)
return null;
row = p / m;
col = p % m;
*(*(marks + row) + col) = PRIME;
markInRow = false;
for (j = 0; j < m; j++)
if (*(*(marks + row) + j) == MARKED)
{
markInRow = true;
col = j;
}
if (markInRow)
{
*(rowCovered + row) = true;
*(colCovered + col) = false;
for (i = 0; i < n; i++)
if ((*(*(t + i) + col) == 0) && (row != i))
{
if ((!*(rowCovered + i)) && (!*(colCovered + col)))
BitSet_set(zeroes, i * m + col);
else
BitSet_unset(zeroes, i * m + col);
}
for (j = 0; j < m; j++)
if ((*(*(t + row) + j) == 0) && (col != j))
{
if ((!*(rowCovered + row)) && (!*(colCovered + j)))
BitSet_set(zeroes, row * m + j);
else
BitSet_unset(zeroes, row * m + j);
}
if ((!*(rowCovered + row)) && (!*(colCovered + col)))
BitSet_set(zeroes, row * m + col);
else
BitSet_unset(zeroes, row * m + col);
}
else
{
long* rc = new_longs(2);
*rc = row;
*(rc + 1) = col;
return rc;
}
}
}
/**
* Removes all prime marks and modifies the marking
*
* @param marks The marking matrix
* @param altRow Marking modification path rows
* @param altCol Marking modification path columns
* @param colMarks Markings in the columns
* @param rowPrimes Primes in the rows
* @param prime The last found prime
* @param n The table's height
* @param m The table's width
*/
void kuhn_altMarks(byte** marks, long* altRow, long* altCol, long* colMarks, long* rowPrimes, long* prime, long n, long m)
{
long index = 0, i, j;
*altRow = *prime;
*altCol = *(prime + 1);
for (i = 0; i < n; i++)
{
*(rowPrimes + i) = -1;
*(colMarks + i) = -1;
}
for (i = n; i < m; i++)
*(colMarks + i) = -1;
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
if (*(*(marks + i) + j) == MARKED)
*(colMarks + j) = i;
else if (*(*(marks + i) + j) == PRIME)
*(rowPrimes + i) = j;
long row, col;
for (;;)
{
row = *(colMarks + *(altCol + index));
if (row < 0)
break;
index++;
*(altRow + index) = row;
*(altCol + index) = *(altCol + index - 1);
col = *(rowPrimes + *(altRow + index));
index++;
*(altRow + index) = *(altRow + index - 1);
*(altCol + index) = col;
}
byte* markx;
for (i = 0; i <= index; i++)
{
markx = *(marks + *(altRow + i)) + *(altCol + i);
if (*markx == MARKED)
*markx = UNMARKED;
else
*markx = MARKED;
}
byte* marksi;
for (i = 0; i < n; i++)
{
marksi = *(marks + i);
for (j = 0; j < m; j++)
if (*(marksi + j) == PRIME)
*(marksi + j) = UNMARKED;
}
}
/**
* Depending on whether the cells' rows and columns are covered,
* the the minimum value in the table is added, subtracted or
* neither from the cells.
*
* @param t The table to manipulate
* @param rowCovered Array that tell whether the rows are covered
* @param colCovered Array that tell whether the columns are covered
* @param n The table's height
* @param m The table's width
*/
void kuhn_addAndSubtract(cell** t, boolean* rowCovered, boolean* colCovered, long n, long m)
{
long i, j;
cell min = 0x7FFFffffL;
for (i = 0; i < n; i++)
if (!*(rowCovered + i))
for (j = 0; j < m; j++)
if ((!*(colCovered + j)) && (min > *(*(t + i) + j)))
min = *(*(t + i) + j);
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
{
if (*(rowCovered + i))
*(*(t + i) + j) += min;
if (*(colCovered + j) == false)
*(*(t + i) + j) -= min;
}
}
/**
* Creates a list of the assignment cells
*
* @param marks Matrix markings
* @param n The table's height
* @param m The table's width
* @return The assignment, an array of row–coloumn pairs
*/
long** kuhn_assign(byte** marks, long n, long m)
{
long** assignment = new_arrays(n);
long i, j;
for (i = 0; i < n; i++)
{
*(assignment + i) = new_longs(2);
for (j = 0; j < m; j++)
if (*(*(marks + i) + j) == MARKED)
{
**(assignment + i) = i;
*(*(assignment + i) + 1) = j;
}
}
return assignment;
}
/**
* Constructor for BitSet
*
* @param size The (fixed) number of bits to bit set should contain
* @return The a unique BitSet instance with the specified size
*/
BitSet new_BitSet(long size)
{
BitSet this;
long c = size >> 6L;
if (size & 63L)
c++;
this.limbs = new_llongs(c);
this.prev = new_longs(c + 1L);
this.next = new_longs(c + 1L);
*(this.first = new_longs(1)) = 0;
long i;
for (i = 0; i < c; i++)
{
*(this.limbs + i) = 0LL;
*(this.prev + i) = *(this.next + i) = 0L;
}
*(this.prev + c) = *(this.next + c) = 0L;
return this;
}
/**
* Turns on a bit in a bit set
*
* @param this The bit set
* @param i The index of the bit to turn on
*/
void BitSet_set(BitSet this, long i)
{
long j = i >> 6L;
llong old = *(this.limbs + j);
*(this.limbs + j) |= 1LL << (llong)(i & 63L);
if ((!*(this.limbs + j)) ^ (!old))
{
j++;
*(this.prev + *(this.first)) = j;
*(this.prev + j) = 0;
*(this.next + j) = *(this.first);
*(this.first) = j;
}
}
/**
* Turns off a bit in a bit set
*
* @param this The bit set
* @param i The index of the bit to turn off
*/
void BitSet_unset(BitSet this, long i)
{
long j = i >> 6L;
llong old = *(this.limbs + j);
*(this.limbs + j) &= ~(1LL << (llong)(i & 63L));
if ((!*(this.limbs + j)) ^ (!old))
{
j++;
long p = *(this.prev + j);
long n = *(this.next + j);
*(this.prev + n) = p;
*(this.next + p) = n;
if (*(this.first) == j)
*(this.first) = *(this.next + j);
}
}
/**
* Gets the index of any set bit in a bit set
*
* @param this The bit set
* @return The index of any set bit
*/
long BitSet_any(BitSet this)
{
if (*(this.first) == 0L)
return -1;
long i = *(this.first) - 1L;
return lb(*(this.limbs + i) & -*(this.limbs + i)) + (i << 6L);
}
/**
* Calculates the floored binary logarithm of a positive integer
*
* @param value The integer whose logarithm to calculate
* @return The floored binary logarithm of the integer
*/
long lb(llong value)
{
long rc = 0L;
llong v = value;
if (v & 0xFFFFFFFF00000000LL) { rc |= 32L; v >>= 32LL; }
if (v & 0x00000000FFFF0000LL) { rc |= 16L; v >>= 16LL; }
if (v & 0x000000000000FF00LL) { rc |= 8L; v >>= 8LL; }
if (v & 0x00000000000000F0LL) { rc |= 4L; v >>= 4LL; }
if (v & 0x000000000000000CLL) { rc |= 2L; v >>= 2LL; }
if (v & 0x0000000000000002LL) rc |= 1L;
return rc;
}
|