// -*- mode: c, coding: utf-8 -*- /** * š¯“˛(nĀ³) implementation of the Hungarian algorithm * * Copyright (C) 2011 Mattias AndrĆ©e * * This program is free software. It comes without any warranty, to * the extent permitted by applicable law. You can redistribute it * and/or modify it under the terms of the Do What The Fuck You Want * To Public License, Version 2, as published by Sam Hocevar. See * http://sam.zoy.org/wtfpl/COPYING for more details. */ #include #include #define cell long #define CELL_STR "%li" #define llong long long #define byte char #define boolean long #define null 0 #define true 1 #define false 0 //new cell[X] #define new_cells(X) new_longs(X) //new boolean[X] #define new_booleans(X) new_longs(X) //new byte[X] #define new_bytes(X) malloc(X) //new llong[X] #define new_llongs(X) malloc((X) << 3) //new long[X] #if !(defined __LP64__ || defined __LLP64__) #define new_longs(X) malloc((X) << 2) /*32-bit*/ #else #define new_longs(X) malloc((X) << 3) /*64-bit*/ #endif //new float[X] #define new_floats(X) malloc((X) << 2) //new double[X] #define new_doubles(X) malloc((X) << 3) //new ?[][X] #define new_arrays(X) new_longs(X) #ifdef DEBUG #define debug(X) fprintf(stderr, "\e[31m%s\e[m\n", X) #else #define debug(X) #endif /** * Cell marking: none */ #define UNMARKED 0L /** * Cell marking: marked */ #define MARKED 1L /** * Cell marking: prime */ #define PRIME 2L /** * Bit set, a set of fixed number of bits/booleans */ typedef struct { /** * The set of all limbs, a limb consist of 64 bits */ cell* limbs; /** * Singleton array with the index of the first non-zero limb */ long* first; /** * Array the the index of the previous non-zero limb for echo limb */ long* prev; /** * Array the the index of the next non-zero limb for echo limb */ long* next; } BitSet; long** kuhn_match(cell** table, long n, long m); void kuhn_reduceRows(cell** t, long n, long m); byte** kuhn_mark(cell** t, long n, long m); boolean kuhn_isDone(byte** marks, boolean* colCovered, long n, long m); long* kuhn_findPrime(cell** t, byte** marks, boolean* rowCovered, boolean* colCovered, long n, long m); void kuhn_altMarks(byte** marks, long* altRow, long* altCol, long* colMarks, long* rowPrimes, long* prime, long n, long m); void kuhn_addAndSubtract(cell** t, boolean* rowCovered, boolean* colCovered, long n, long m); long** kuhn_assign(byte** marks, long n, long m); BitSet new_BitSet(long size); void BitSet_set(BitSet this, long i); void BitSet_unset(BitSet this, long i); long BitSet_any(BitSet this); long lb(llong x); void print(cell** t, long n, long m, long** assignment); int main(int argc, char** argv) { unsigned a, d; asm("cpuid"); asm volatile("rdtsc" : "=a" (a), "=d" (d)); srand(((llong)a) | (((llong)d) << 32LL)); long n = 10, m = 15; long i; cell** t = new_arrays(n); cell** table = new_arrays(n); long j; if (argc < 2) for (i = 0; i < n; i++) { *(t + i) = new_llongs(m); *(table + i) = new_llongs(m); for (j = 0; j < m; j++) *(*(table + i) + j) = *(*(t + i) + j) = (cell)(random() & 63); } else { long x; scanf("%li", &n); scanf("%li", &m); t = new_arrays(n); table = new_arrays(n); for (i = 0; i < n; i++) { *(t + i) = new_llongs(m); *(table + i) = new_llongs(m); for (j = 0; j < m; j++) { scanf(CELL_STR, &x); *(*(table + i) + j) = *(*(t + i) + j) = x; } } } //kuhn_match(table, n, m); printf("\nInput:\n\n"); print(t, n, m, null); long** assignment = kuhn_match(table, n, m); printf("\nOutput:\n\n"); print(t, n, m, assignment); cell sum = 0; for (i = 0; i < n; i++) sum += *(*(t + *(*(assignment + i) + 0)) + *(*(assignment + i) + 1)); printf("\n\nSum: %li\n\n", sum); return 0; } void print(cell** t, long n, long m, long** assignment) { long i, j; long** assigned = new_arrays(n); for (i = 0; i < n; i++) { *(assigned + i) = new_longs(m); for (j = 0; j < m; j++) *(*(assigned + i) + j) = 0; } if (assignment != null) for (i = 0; i < n; i++) (*(*(assigned + **(assignment + i)) + *(*(assignment + i) + 1)))++; for (i = 0; i < n; i++) { printf(" "); for (j = 0; j < m; j++) { if (*(*(assigned + i) + j)) printf("\e[%lim", 30 + *(*(assigned + i) + j)); printf("%5li%s\e[m ", (cell)(*(*(t + i) + j)), (*(*(assigned + i) + j) ? "^" : " ")); } printf("\n\n"); } } /** * Calculates an optimal bipartite minimum weight matching using an * O(nĀ³)-time implementation of The Hungarian Algorithm, also known * as Kuhn's Algorithm. This implemention is restricted to square * tables. * * @param table The table in which to perform the matching * @param n The dimension of the table * @return The optimal assignment, an array of rowā€“coloumn pairs */ long** kuhn_match(cell** table, long n, long m) { long i; /* not copying table since it will only be used once */ kuhn_reduceRows(table, n, m); byte** marks = kuhn_mark(table, n, m); boolean* rowCovered = new_booleans(n); boolean* colCovered = new_booleans(m); for (i = 0; i < n; i++) { *(rowCovered + i) = false; *(colCovered + i) = false; } for (i = n; i < m; i++) *(colCovered + i) = false; long* altRow = new_longs(n * m); long* altCol = new_longs(n * m); long* rowPrimes = new_longs(n); long* colMarks = new_longs(m); long* prime; for (;;) { if (kuhn_isDone(marks, colCovered, n, m)) break; for (;;) { prime = kuhn_findPrime(table, marks, rowCovered, colCovered, n, m); if (prime != null) { kuhn_altMarks(marks, altRow, altCol, colMarks, rowPrimes, prime, n, m); for (i = 0; i < n; i++) { *(rowCovered + i) = false; *(colCovered + i) = false; } for (i = n; i < m; i++) *(colCovered + i) = false; break; } kuhn_addAndSubtract(table, rowCovered, colCovered, n, m); } } return kuhn_assign(marks, n, m); } /** * Reduces the values on each rows so that, for each row, the * lowest cells value is zero, and all cells' values is decrease * with the same value [the minium value in the row]. * * @param t The table in which to perform the reduction * @param n The table's height * @param m The table's width */ void kuhn_reduceRows(cell** t, long n, long m) { long i, j; cell min; cell* ti; for (i = 0; i < n; i++) { ti = *(t + i); min = *ti; for (j = 1; j < m; j++) if (min > *(ti + j)) min = *(ti + j); for (j = 0; j < m; j++) *(ti + j) -= min; } } /** * Create a matrix with marking of cells in the table whose * value is zero [minimal for the row]. Each marking will * be on an unique row and an unique column. * * @param t The table in which to perform the reduction * @param n The table's height * @param m The table's width * @return A matrix of markings as described in the summary */ byte** kuhn_mark(cell** t, long n, long m) { long i, j; byte** marks = new_arrays(n); byte* marksi; for (i = 0; i < n; i++) { marksi = *(marks + i) = new_bytes(m); for (j = 0; j < m; j++) *(marksi + j) = UNMARKED; } boolean* rowCovered = new_booleans(n); boolean* colCovered = new_booleans(m); for (i = 0; i < n; i++) { *(rowCovered + i) = false; *(colCovered + i) = false; } for (i = 0; i < m; i++) *(colCovered + i) = false; for (i = 0; i < n; i++) for (j = 0; j < m; j++) if ((!*(rowCovered + i)) && (!*(colCovered + j)) && (*(*(t + i) + j) == 0)) { *(*(marks + i) + j) = MARKED; *(rowCovered + i) = true; *(colCovered + j) = true; } return marks; } /** * Determines whether the marking is complete, that is * if each row has a marking which is on a unique column. * * @param marks The marking matrix * @param colCovered An array which tells whether a column is covered * @param n The table's height * @param m The table's width * @return Whether the marking is complete */ boolean kuhn_isDone(byte** marks, boolean* colCovered, long n, long m) { long i, j; for (j = 0; j < m; j++) for (i = 0; i < n; i++) if (*(*(marks + i) + j) == MARKED) { *(colCovered + j) = true; break; } long count = 0; for (j = 0; j < m; j++) if (*(colCovered + j)) count++; return count == n; } /** * Finds a prime * * @param t The table * @param marks The marking matrix * @param rowCovered Row cover array * @param colCovered Column cover array * @param n The table's height * @param m The table's width * @return The row and column of the found print, null will be returned if none can be found */ long* kuhn_findPrime(cell** t, byte** marks, boolean* rowCovered, boolean* colCovered, long n, long m) { long i, j; BitSet zeroes = new_BitSet(n * n); for (i = 0; i < n; i++) if (!*(rowCovered + i)) for (j = 0; j < m; j++) if ((!*(colCovered + j)) && (*(*(t + i) + j) == 0)) BitSet_set(zeroes, i * m + j); long p, row, col; boolean markInRow; for (;;) { p = BitSet_any(zeroes); if (p < 0) return null; row = p / m; col = p % m; *(*(marks + row) + col) = PRIME; markInRow = false; for (j = 0; j < m; j++) if (*(*(marks + row) + j) == MARKED) { markInRow = true; col = j; } if (markInRow) { *(rowCovered + row) = true; *(colCovered + col) = false; for (i = 0; i < n; i++) if ((*(*(t + i) + col) == 0) && (row != i)) { if ((!*(rowCovered + i)) && (!*(colCovered + col))) BitSet_set(zeroes, i * m + col); else BitSet_unset(zeroes, i * m + col); } for (j = 0; j < m; j++) if ((*(*(t + row) + j) == 0) && (col != j)) { if ((!*(rowCovered + row)) && (!*(colCovered + j))) BitSet_set(zeroes, row * m + j); else BitSet_unset(zeroes, row * m + j); } if ((!*(rowCovered + row)) && (!*(colCovered + col))) BitSet_set(zeroes, row * m + col); else BitSet_unset(zeroes, row * m + col); } else { long* rc = new_longs(2); *rc = row; *(rc + 1) = col; return rc; } } } /** * Removes all prime marks and modifies the marking * * @param marks The marking matrix * @param altRow Marking modification path rows * @param altCol Marking modification path columns * @param colMarks Markings in the columns * @param rowPrimes Primes in the rows * @param prime The last found prime * @param n The table's height * @param m The table's width */ void kuhn_altMarks(byte** marks, long* altRow, long* altCol, long* colMarks, long* rowPrimes, long* prime, long n, long m) { long index = 0, i, j; *altRow = *prime; *altCol = *(prime + 1); for (i = 0; i < n; i++) { *(rowPrimes + i) = -1; *(colMarks + i) = -1; } for (i = n; i < m; i++) *(colMarks + i) = -1; for (i = 0; i < n; i++) for (j = 0; j < m; j++) if (*(*(marks + i) + j) == MARKED) *(colMarks + j) = i; else if (*(*(marks + i) + j) == PRIME) *(rowPrimes + i) = j; long row, col; for (;;) { row = *(colMarks + *(altCol + index)); if (row < 0) break; index++; *(altRow + index) = row; *(altCol + index) = *(altCol + index - 1); col = *(rowPrimes + *(altRow + index)); index++; *(altRow + index) = *(altRow + index - 1); *(altCol + index) = col; } byte* markx; for (i = 0; i <= index; i++) { markx = *(marks + *(altRow + i)) + *(altCol + i); if (*markx == MARKED) *markx = UNMARKED; else *markx = MARKED; } byte* marksi; for (i = 0; i < n; i++) { marksi = *(marks + i); for (j = 0; j < m; j++) if (*(marksi + j) == PRIME) *(marksi + j) = UNMARKED; } } /** * Depending on whether the cells' rows and columns are covered, * the the minimum value in the table is added, subtracted or * neither from the cells. * * @param t The table to manipulate * @param rowCovered Array that tell whether the rows are covered * @param colCovered Array that tell whether the columns are covered * @param n The table's height * @param m The table's width */ void kuhn_addAndSubtract(cell** t, boolean* rowCovered, boolean* colCovered, long n, long m) { long i, j; cell min = 0x7FFFffffL; for (i = 0; i < n; i++) if (!*(rowCovered + i)) for (j = 0; j < m; j++) if ((!*(colCovered + j)) && (min > *(*(t + i) + j))) min = *(*(t + i) + j); for (i = 0; i < n; i++) for (j = 0; j < m; j++) { if (*(rowCovered + i)) *(*(t + i) + j) += min; if (*(colCovered + j) == false) *(*(t + i) + j) -= min; } } /** * Creates a list of the assignment cells * * @param marks Matrix markings * @param n The table's height * @param m The table's width * @return The assignment, an array of rowā€“coloumn pairs */ long** kuhn_assign(byte** marks, long n, long m) { long** assignment = new_arrays(n); long i, j; for (i = 0; i < n; i++) { *(assignment + i) = new_longs(2); for (j = 0; j < m; j++) if (*(*(marks + i) + j) == MARKED) { **(assignment + i) = i; *(*(assignment + i) + 1) = j; } } return assignment; } /** * Constructor for BitSet * * @param size The (fixed) number of bits to bit set should contain * @return The a unique BitSet instance with the specified size */ BitSet new_BitSet(long size) { BitSet this; long c = size >> 6L; if (size & 63L) c++; this.limbs = new_llongs(c); this.prev = new_longs(c + 1L); this.next = new_longs(c + 1L); *(this.first = new_longs(1)) = 0; long i; for (i = 0; i < c; i++) { *(this.limbs + i) = 0LL; *(this.prev + i) = *(this.next + i) = 0L; } *(this.prev + c) = *(this.next + c) = 0L; return this; } /** * Turns on a bit in a bit set * * @param this The bit set * @param i The index of the bit to turn on */ void BitSet_set(BitSet this, long i) { long j = i >> 6L; llong old = *(this.limbs + j); *(this.limbs + j) |= 1LL << (llong)(i & 63L); if ((!*(this.limbs + j)) ^ (!old)) { j++; *(this.prev + *(this.first)) = j; *(this.prev + j) = 0; *(this.next + j) = *(this.first); *(this.first) = j; } } /** * Turns off a bit in a bit set * * @param this The bit set * @param i The index of the bit to turn off */ void BitSet_unset(BitSet this, long i) { long j = i >> 6L; llong old = *(this.limbs + j); *(this.limbs + j) &= ~(1LL << (llong)(i & 63L)); if ((!*(this.limbs + j)) ^ (!old)) { j++; long p = *(this.prev + j); long n = *(this.next + j); *(this.prev + n) = p; *(this.next + p) = n; if (*(this.first) == j) *(this.first) = *(this.next + j); } } /** * Gets the index of any set bit in a bit set * * @param this The bit set * @return The index of any set bit */ long BitSet_any(BitSet this) { if (*(this.first) == 0L) return -1; long i = *(this.first) - 1L; return lb(*(this.limbs + i) & -*(this.limbs + i)) + (i << 6L); } /** * Calculates the floored binary logarithm of a positive integer * * @param value The integer whose logarithm to calculate * @return The floored binary logarithm of the integer */ long lb(llong value) { long rc = 0L; llong v = value; if (v & 0xFFFFFFFF00000000LL) { rc |= 32L; v >>= 32LL; } if (v & 0x00000000FFFF0000LL) { rc |= 16L; v >>= 16LL; } if (v & 0x000000000000FF00LL) { rc |= 8L; v >>= 8LL; } if (v & 0x00000000000000F0LL) { rc |= 4L; v >>= 4LL; } if (v & 0x000000000000000CLL) { rc |= 2L; v >>= 2LL; } if (v & 0x0000000000000002LL) rc |= 1L; return rc; }