# -*- python -*-
'''
xpybar – xmobar replacement written in python
Copyright © 2014, 2015, 2016, 2017, 2018 Mattias Andrée (maandree@kth.se)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
'''
# A moderate xpybar configuration example that has a few monitors
# that are updates continuously, and rat support
import time
import threading
from util import *
from plugins.clock import Clock
from plugins.cpu import CPU
from plugins.mem import Memory
from plugins.network import Network
from plugins.ping import Ping
from plugins.alsa import ALSA
from plugins.moc import MOC
import Xlib.protocol.event
OUTPUT = 0
'''
:int The index of the monitor that the panel is displayed on
'''
YPOS = 24
'''
:int The panels position relative to the upper or lower edge
of the monitor (which is determined by `TOP`)
'''
TOP = True
'''
:bool True: `YPOS` is relative to the upper edge
False: `YPOS` is relative to the lower edge
'''
TICKS_PER_SECOND = 4
'''
:float The number of times per second the panel is updated
'''
time_format = '%Y-(%m)%b-%d %T, %a w%V, %Z'
'''
:str The format the clock is displayed in
'''
my_clock = Clock(format = time_format, utc = False,
sync_to = Clock.SECONDS / TICKS_PER_SECOND)
'''
:Clock The clock monitor
'''
my_cpu = '...'
'''
:str The output of the CPU monitor
'''
my_mem = '...'
'''
:str The output of the RAM monitor
'''
my_swp = '...'
'''
:str The output of the swap memory monitor
'''
my_shm = '...'
'''
:str The output of the shared memory monitor
'''
my_net = 'Net: ...'
'''
:str The output of the network monitor
'''
my_snd = '...'
'''
:str The output of the audio monitor
'''
my_moc = '...'
'''
:str The output of the music on console monitor
'''
limited = lambda v : min(max(int(v + 0.5), 0), 100)
'''
:(float)→int Round an float to nearest integer and limit the range to [0, 100]
'''
len_ = len
len = lambda string : colour_aware_len(string, len_)
###############################################################################################################
###############################################################################################################
# CPU monitor
def cpu():
'''
Update CPU usage
'''
global my_cpu, last_cpus_idle, last_cpus_total, last_cpu_idle, last_cpu_total
try:
cpu_ = CPU()
now_cpu_idle, now_cpus_idle = cpu_.cpu[CPU.idle], [cpu[CPU.idle] for cpu in cpu_.cpus]
now_cpu_total, now_cpus_total = sum(cpu_.cpu), [sum(cpu) for cpu in cpu_.cpus]
if len(now_cpus_idle) > len(last_cpus_idle):
last_cpus_idle += now_cpus_idle[len(last_cpus_idle):]
last_cpus_total += now_cpus_total[len(last_cpus_total):]
cpus = zip(now_cpus_idle, now_cpus_total, last_cpus_idle, last_cpus_total)
cpus = ' '.join([cpu_colourise(cpu_usage(*c)) for c in cpus])
cpu_ = cpu_colourise(cpu_usage(now_cpu_idle, now_cpu_total, last_cpu_idle, last_cpu_total))
cpu_ = '%s : %s' % (cpus, cpu_)
last_cpus_idle, last_cpus_total = now_cpus_idle, now_cpus_total
last_cpu_idle, last_cpu_total = now_cpu_idle, now_cpu_total
my_cpu = cpu_
except:
my_cpu = '...'
def cpu_usage(now_idle, now_total, last_idle, last_total):
'''
Calculate the CPU usage
@param now_idle:int Time spent in the idle task, at the current measurement
@param now_total:int Total time that has passed, at the current measurement
@param last_idle:int Time spent in the idle task, at the last measurement
@param last_total:int Total time that has passed, at the last measurement
@return :float? The CPU usage, `None` if not time has passed
'''
total = now_total - last_total
idle = now_idle - last_idle
return None if total == 0 else (total - idle) * 100 / total
def cpu_colourise_(value):
'''
Colourise a CPU usage value
@param value:int The CPU usage
@return :str `value` coloured with an appropriate colour
'''
if value is None:
return '--%'
elif value >= 100:
return '\033[31m100\033[0m'
colour = '39'
if value >= 5: colour = '32'
if value >= 50: colour = '33'
if value >= 90: colour = '31'
return '\033[%sm%2i\033[0m%%' % (colour, value)
cpu_none = cpu_colourise_(None)
'''
:str Cache for the coloursation of the value `None`
'''
cpu_coloured = tuple(cpu_colourise_(i) for i in range(101))
'''
:tuple<str> Cache of colourised CPU usage values
'''
cpu_colourise = lambda v : cpu_none if v is None else cpu_coloured[limited(v)]
'''
:(value:int)→str Cached version of `cpu_colourise_`
'''
last_cpu_idle = 0
'''
:int Time spent in the idle task, at the last measurement, on all CPU-threads
'''
last_cpu_total = 0
'''
:int Total time that has passed, at the last measurement, on all CPU-threads
'''
last_cpus_idle = []
'''
:int Time spent in the idle task, at the last measurement, for each CPU-thread
'''
last_cpus_total = []
'''
:int Total time that has passed, at the last measurement, for each CPU-thread
'''
###############################################################################################################
# Memory usage monitor
def mem():
'''
Update memory usage
'''
global my_mem, my_swp, my_shm
try:
memory = Memory()
if memory.mem_total == 0:
my_mem = '---'
my_shm = '---'
else:
my_mem = memory_coloured[limited(memory.mem_used * 100 / memory.mem_total)]
my_shm = memory_coloured[limited(memory.shmem * 100 / memory.mem_total)]
if memory.swap_total == 0:
my_swp = 'off'
else:
my_swp = memory_coloured[limited(memory.swap_used * 100 / memory.swap_total)]
except:
my_mem = '...'
my_swp = '...'
my_shm = '...'
def memory_colourise(value):
'''
Colourise a memory usage value
@param value:int The memory usage
@return :str `value` coloured with an appropriate colour
'''
if value >= 100:
return '\033[31m100\033[0m'
colour = '39'
if value > 30: colour = '32'
if value > 50: colour = '33'
if value > 80: colour = '31'
return '\033[%sm%i\033[0m%%' % (colour, value)
memory_coloured = tuple(memory_colourise(i) for i in range(101))
'''
:tuple<str> Cache of colourised memory usage values
'''
###############################################################################################################
# Network monitor
def net():
'''
Update network usage and latency
'''
global my_net, net_time, net_last
try:
net_now = time.monotonic()
net_tdiff, net_time = net_now - net_time, net_now
devs = Network('lo').devices
def kbps(device, direction):
'''
Get the number of kilobits transmitted or received per second since the last measurement
@param device:str The network device
@param direction:str 'rx' for received data, 'tx' for transmitted data
@return :str The number of kilobits transmitted or received per second, colourised
'''
direction += '_bytes'
value = devs[device][direction]
if device in net_last:
value -= net_last[device][direction]
else:
value = 0
value /= 128 * net_tdiff
return network_colourise(value)
def KBps(device, direction):
'''
Get the number of kilobytes transmitted or received per second since the last measurement
@param device:str The network device
@param direction:str 'rx' for received data, 'tx' for transmitted data
@return :float The number of kilobytes transmitted or received per second
'''
direction += '_bytes'
value = devs[device][direction]
if device in net_last:
value -= net_last[device][direction]
else:
value = 0
value /= 1024 * net_tdiff
return value
my_net = ' '.join('%s: %skbps(%.0fKB/s)↓ %skbps(%.0fKB/s)↑ %s' %
(dev, kbps(dev, 'rx'), KBps(dev, 'rx'), kbps(dev, 'tx'), KBps(dev, 'tx'), ping(dev))
for dev in devs)
net_last = devs
except:
my_net = 'Net: ...'
def network_colourise(value):
'''
Colourise a network usage value
@param value:int The network usage, in kilobits per second
@return :str `value` coloured with an appropriate colour
'''
colour = '39'
if value > 40: colour = '32'
if value > 8000: colour = '33'
if value > 60000: colour = '31'
return '\033[%sm%3.0f\033[0m' % (colour, value)
def ping(device):
'''
Get the latency for a network device
@param device:str The device
@return :str The latency, colourised
'''
try:
monitor = my_ping[device][0]
monitor.semaphore.acquire()
try:
latency = monitor.get_latency(True)[1]
droptime = monitor.dropped_time(True)
if droptime:
return '\033[31m%4is\033[00m' % droptime
elif latency is None:
return '\033[31mdrop?\033[00m'
colour = '31'
if latency < 5: colour = '32'
elif latency < 10: colour = '00'
elif latency < 20: colour = '33'
return '\033[%sm%5.2f\033[00m' % (colour, latency)
finally:
monitor.semaphore.release()
except:
return '...'
my_ping = Ping(targets = Ping.get_nics(), interval = 10).monitors
'''
:Ping Latency monitor
'''
net_time = time.monotonic()
'''
:float The time of the last reading
'''
net_last = {}
'''
:dict<str, dict<str, int>> Readings from the update
'''
###############################################################################################################
# Audio monitor
def snd(add_missing_mixers = True):
'''
Update audio volume
@param add_missing_mixers:bool Whether missing mixers should be added
'''
global my_snd, stops_alsa
stops_ = []
if add_missing_mixers:
try:
for i, mixer in my_alsa:
if mixer is None:
my_alsa[i] = alsa(*(mixers[i]))
except:
pass
try:
offset = 0
my_snd_ = []
for mixer in my_alsa:
if mixer is not None:
text = snd_read_m(mixer)
my_snd_.append(text)
text_len = len(text)
mixer_stops = [0, text_len]
mixer_name_len, text = len(text.split(': ')[0]), ': '.join(text.split(': ')[1:])
for i in range((len(text) + 1) // 4):
mixer_stops.append(mixer_name_len + 2 + 4 * i + 0)
mixer_stops.append(mixer_name_len + 2 + 4 * i + 3)
stops_.append(tuple(offset + stop for stop in mixer_stops))
offset += text_len + 3
else:
stops_.append((-1, -1))
my_snd = ' │ '.join(my_snd_)
stops_alsa = stops_
except:
my_snd = '...'
stops_alsa = [(-1, -1)] * len(my_alsa)
def alsa(cardindex, mixername):
'''
The a volume controller for a mixer
@param cardindex:int The index of the audio card
@param mixername:str The name of the mixer
@return :Alsa? Volume controller, `None` if the mixers is not available
'''
try:
return ALSA(cardindex, mixername)
except:
return None
snd_text_v = lambda v : '--%' if v is None else ('%2i%%' % v)[:3]
'''
:(v:int?)→str Convert a volume integer to a volume str, `None` as input means it is muted
'''
snd_read_m = lambda m : '%s: %s' % (m.mixername, ' '.join(snd_text_v(v) for v in m.get_volume()))
'''
:(m:ALSA)→str Create a string representing the current volumes on a mixer
'''
mixers = ((0, 'Master'), (0, 'Headphone'), (0, 'Speaker'), (0, 'PCM'))
'''
:tuple<(cardindex:int, mixername:str)> List of mixers that should be monitored
'''
my_alsa = [alsa(card, mixer) for card, mixer in mixers]
'''
:list<ALSA> ALSA volume controllers
'''
stops_alsa = [(-1, -1)] * len(my_alsa)
'''
:itr<itr<int>> Map from mixer index to location of substring in the monitor display.
The first element is where the mixer starts, and the second element is
where the mixer stops. Each mixer may have 2 additional elements for each
channel, in that case that are starts and stops, alternating.
'''
###############################################################################################################
# Music on console monitor
my_moc = '> || [] |< >|'
moc_controller = MOC()
'''
:MOC The MOC controller
'''
###############################################################################################################
###############################################################################################################
functions = [ my_clock.read
, lambda : my_cpu
, lambda : my_mem
, lambda : my_swp
, lambda : my_shm
, lambda : my_net
, lambda : my_snd
, lambda : my_moc
]
'''
:itr<()→str> Functions that are evulated and replaces the %s:s in
`pattern` every time to panel is redrawn
'''
pattern = [ [ '%n%s%n │ %nCpu: %s%n │ %nMem: %s%n │ %nSwp: %s%n │ %nShm: %s%n'
, '%n%s%n │ %n%s%n │ %nMoc: %s%n'
]
]
'''
:itr<itr<str>> The layout of the monitors on the panel
'''
async_fun = [ Sometimes(cpu, TICKS_PER_SECOND)
, Sometimes(mem, TICKS_PER_SECOND)
, Sometimes(net, TICKS_PER_SECOND)
, Sometimes(snd, TICKS_PER_SECOND * 3)
]
'''
:itr<()→void> Monitors that are be update asynchronously
'''
semaphore = threading.Semaphore()
'''
:Semaphore Semaphore used to make sure functions do not step on each others' toes
'''
HEIGHT_PER_LINE = 12
'''
:int The height of each line
'''
HEIGHT = len(pattern) * HEIGHT_PER_LINE
'''
:int The height of the panel
'''
stops = [-1] * (2 * len(functions))
'''
:itr<int> Locations of stops marked by `%n` in `pattern`
'''
pattern = '\n'.join('\0'.join(p) for p in pattern)
start_ = start
def start():
'''
Invoked when it is time to create panels and map them
'''
# Create panel, clear it, and synchronise
start_()
bar.clear()
get_display().flush()
def update_sys():
'''
Update data asynchronously, but do not redraw the panel
'''
[f() for f in async_fun]
def update_clock():
'''
Update the clock, and redraw the panel
'''
if semaphore.acquire(blocking = False):
try:
for f in functions:
if isinstance(f, Clocked):
f(True)
finally:
semaphore.release()
bar.invalidate()
# Start monitoring
xasync(lambda : watch(1 / TICKS_PER_SECOND, update_sys), name = 'sys')
xasync(lambda : my_clock.continuous_sync(update_clock), name = 'clock')
def redraw():
'''
Invoked when redraw is needed
'''
global stops
if semaphore.acquire(blocking = False):
try:
(values, stops) = sprintf(pattern, *(f() for f in functions))
bar.partial_clear(0, bar.width, 10, 0, 2, values)
bar.draw_coloured_splitted_text(0, bar.width, 10, 0, 2, values)
finally:
semaphore.release()
LEFT_BUTTON = 1
'''
:int The index of the left button
'''
MIDDLE_BUTTON = 2
'''
:int The index of the middle button
'''
RIGHT_BUTTON = 3
'''
:int The index of the right button
'''
SCROLL_UP = 4
'''
:int The index of the psuedo-button for scrolling upwards
'''
SCROLL_DOWN = 5
'''
:int The index of the psuedo-button for scrolling downwards
'''
SCROLL_LEFT = 6
'''
:int The index of the psuedo-button for scrolling left
'''
SCROLL_RIGHT = 7
'''
:int The index of the psuedo-button for scrolling right
'''
FORWARD_BUTTON = 8 # X1
'''
:int The index of the forward button, also known as X1
'''
BACKWARD_BUTTON = 9 # X2
'''
:int The index of the backward button, also known as X2
'''
def unhandled_event(e):
'''
Invoked when an unrecognised even is polled,
feel free to replace this completely
@param e The event
'''
if isinstance(e, Xlib.protocol.event.ButtonPress):
y = e.event_y // HEIGHT_PER_LINE
lx = e.event_x // bar.font_width
rx = (bar.width - e.event_x) // bar.font_width
button = e.detail
button_pressed(y, lx, rx, button)
def button_pressed(y, lx, rx, button):
'''
Called from `unhandled_event` when a button on a pointer device is pressed
@param y:int The line that the pointer is on, zero based
@param lx:int The column the pointer is on, relative to the left edge, zero based
@param rx:int The column the pointer is on, relative to the right edge, zero based
@param button:int The button on the device that is pressed
'''
# Stops at the left side of line 0
stops_l0 = stops[0 : 10]
# Stops at the right side of line 0
stops_r0 = [stops[15] - x for x in stops[10 : 16]]
try:
if y == 0:
if stops_l0[0] <= lx < stops_l0[1]: # clock
if button == LEFT_BUTTON:
Clock.__init__(my_clock, time_format, not my_clock.utc, my_clock.sync_to)
bar.invalidate()
elif stops_l0[2] <= lx < stops_l0[3]: # cpu
pass
elif stops_l0[4] <= lx < stops_l0[5]: # mem
pass
elif stops_l0[6] <= lx < stops_l0[7]: # swp
pass
elif stops_l0[8] <= lx < stops_l0[9]: # shm
pass
elif stops_r0[0] > rx >= stops_r0[1]: # net
pass
elif stops_r0[2] > rx >= stops_r0[3]: # snd
button_pressed_mixer(stops_r0[2] - rx - 1, button)
elif stops_r0[4] > rx >= stops_r0[5]: # moc
mx = stops_r0[4] - rx - 1 - 5
if button == LEFT_BUTTON:
if 0 <= mx < 1: xasync(lambda : moc_controller.play().wait()) # >
elif 2 <= mx < 4: xasync(lambda : moc_controller.toggle_pause().wait()) # ||
elif 5 <= mx < 7: xasync(lambda : moc_controller.stop().wait()) # []
elif 8 <= mx < 10: xasync(lambda : moc_controller.previous().wait()) # |<
elif 11 <= mx < 13: xasync(lambda : moc_controller.next().wait()) # >|
elif button == FORWARD_BUTTON: xasync(lambda : moc_controller.next().wait())
elif button == BACKWARD_BUTTON: xasync(lambda : moc_controller.previous().wait())
elif button == SCROLL_UP: xasync(lambda : moc_controller.seek(+5).wait())
elif button == SCROLL_DOWN: xasync(lambda : moc_controller.seek(-5).wait())
except:
pass
def button_pressed_mixer(mx, button):
'''
Called from `button_pressed` when the user is touched the audio mixer monitor
@param mx:int The column the pointer is at right-relative to the left edge of the mixer display
@param button:int The button on the device that is pressed
'''
for mixer_index, mixer_stops in enumerate(stops_alsa):
if mixer_stops[0] <= mx < mixer_stops[1]:
# Get channel
channel = ALSA.ALL_CHANNELS
if not button == RIGHT_BUTTON: # not (balance channels)
mixer_stops = mixer_stops[2:]
for channel_index in range(len(mixer_stops) // 2):
if mixer_stops[channel_index * 2 + 0] <= mx < mixer_stops[channel_index * 2 + 1]:
channel = channel_index
break
# Get mixer
mixer = my_alsa[mixer_index]
# Get volumes and all selected channels
volumes = mixer.get_volume()
channels = list(range(len(volumes))) if channel == ALSA.ALL_CHANNELS else [channel]
# Filter volumes to selected channels
volumes = [volume for c, volume in enumerate(volumes) if c in channels]
# Control the volume
if button == LEFT_BUTTON: # toggle mute
mute = not any(volume is None for volume in volumes)
[mixer.set_mute(mute, c) for c in channels]
elif button == RIGHT_BUTTON: # balance channels
mixer.set_volume(sum(volumes) // len(volumes), ALSA.ALL_CHANNELS)
elif button == SCROLL_UP: # turn up the volume
[mixer.set_volume(limited(v + 5), c) for c, v in zip(channels, volumes)]
elif button == SCROLL_DOWN: # turn down the volume
[mixer.set_volume(limited(v - 5), c) for c, v in zip(channels, volumes)]
# Update the panel
snd(False)
bar.invalidate()
break