1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
/**
* slibc — Yet another C library
* Copyright © 2015 Mattias Andrée (maandree@member.fsf.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _SLIBC_ALLOC_H
#define _SLIBC_ALLOC_H
#include <slibc/version.h>
#include <slibc/features.h>
#ifndef __PORTABLE
#define __NEED_size_t
#include <bits/types.h>
/**
* Configurations for `extalloc`.
* There are independent of each other, and
* multiple can be selected by using bitwise or
* between them.
*/
enum extalloc_mode
{
/**
* Clear disowned memory.
*/
EXTALLOC_CLEAR = 1,
/**
* Create new allocation with `malloc` if necessary.
*/
EXTALLOC_MALLOC = 2,
};
/**
* This function is identical to `free`, except it is guaranteed not to
* override the memory segment with zeroes before freeing the allocation.
*
* @param segment The memory segment to free.
*/
void fast_free(void*);
/**
* This function is identical to `free`, except it is guaranteed to
* override the memory segment with zeroes before freeing the allocation.
*
* @param segment The memory segment to free.
*/
void secure_free(void*);
/**
* This function returns the allocation size of
* a memory segment.
*
* Note, this only works for the malloc-family of functions.
* It does not work on `alloca`, `strdupa` (or similar
* functions), memory maps (that are not created by `malloc`,)
* or arrays.
*
* `p = malloc(n), allocsize(p)` will return `n`.
*
* @param segment The memory segment.
* @return The size of the memory segment, 0 on error.
*
* @throws EINVAL If `segment` is `NULL`.
* @throws EFAULT If `segment` is not a pointer to an allocation
* on the heap, or was not allocated with a function
* implemented in slibc. It is however not guaranteed
* that this will happen, undefined behaviour may be
* invoked instead.
*/
size_t allocsize(void*)
__GCC_ONLY(__attribute__((__warn_unused_result__)));
/**
* Variant of `realloc` that overrides newly allocated space
* with zeroes. Additionally, it will override any freed space
* with zeroes, including the old allocation if it creates a
* new allocation.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @return The new allocation, see `realloc` for more details.
*
* @throws ENOMEM The process cannot allocate more memory.
*/
void* crealloc(void*, size_t)
__GCC_ONLY(__attribute__((__warn_unused_result__)));
/**
* This function behaves exactly like `realloc`, except it is
* guaranteed to never initialise or errors data.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @return The new allocation, see `realloc` for more details.
*
* @throws ENOMEM The process cannot allocate more memory.
*/
void* fast_realloc(void*, size_t)
__GCC_ONLY(__attribute__((__warn_unused_result__)));
/**
* This function behaves exactly like `crealloc`, except it
* does not initialise newly allocated size.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @return The new allocation, see `realloc` for more details.
*
* @throws ENOMEM The process cannot allocate more memory.
*/
void* secure_realloc(void*, size_t)
__GCC_ONLY(__attribute__((__warn_unused_result__)));
/**
* This function behaves exactly like `realloc`,
* except you can freely select what memory it clears.
*
* `crealloc(p, n)` is equivalent to (but slightly fast than)
* `custom_realloc(p, n, 1, 1, 1)`.
*
* `fast_realloc(p, n)` is equivalent to (but slightly fast than)
* `custom_realloc(p, n, 0, 0, 0)`.
*
* `secure_realloc(p, n)` is equivalent to (but slightly fast than)
* `custom_realloc(p, n, 1, 0, 1)`.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @param clear_old Whether the disowned area is cleared, even if `ptr` is returned.
* @param clear_new Whether the newly claimed area is cleared.
* @param clear_free Whether the old allocation is cleared if a new pointer is returned.
* @return The new allocation, see `realloc` for more details.
*
* @throws ENOMEM The process cannot allocate more memory.
*/
void* custom_realloc(void*, size_t, int, int, int)
__GCC_ONLY(__attribute__((__warn_unused_result__)));
/**
* This function is similar to `realloc`, however it
* does not copy the data in the memory segment when
* a new pointer is created. Additionally, the
* behaviour is undefined if `ptr` is `NULL`, `size`
* is zero, or `size` equals the old allocation size.
* These additional quirks were added to improve
* performance; after all, this function was added
* to improve performance.
*
* The behaviour is undefined if `mode` does not
* contain a valid flag-combination.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @param mode `EXTALLOC_CLEAR` or `EXTALLOC_MALLOC`, or both or neither.
* @return The new allocation, see `realloc` for more details.
* If `EXTALLOC_MALLOC` is not used, `NULL` is returned
* and `errno` set to zero, if a new allocation is required.
*
* @throws 0 `errno` is set to zero success if `NULL` is returned.
* @throws ENOMEM The process cannot allocate more memory.
*/
void* extalloc(void*, size_t, enum extalloc_mode)
__GCC_ONLY(__attribute__((__nonnull__, __warn_unused_result__)));
/**
* This function behaves exactly like `fast_realloc`, except:
* - Its behaviour is undefined if `ptr` is `NULL`.
* - Its behaviour is undefined if `size` equals the old allocation size.
* - Its behaviour is undefined if `size` is zero.
* - It will never free `ptr`.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @return The new allocation, see `realloc` for more details.
*
* @throws ENOMEM The process cannot allocate more memory.
*/
void* naive_realloc(void*, size_t) /* sic! we limit ourself to ASCII */
__GCC_ONLY(__attribute__((__nonnull__, __warn_unused_result__)));
/**
* This function behaves exactly like `naive_realloc`, except
* it will return `NULL` with `errno` set to zero, if it is
* not possible to perform the shrink or growth without creating
* new pointer.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @return `ptr` on success or `NULL` on error or if `malloc` is needed.
*
* @throws 0 `malloc` is require to perform the action.
* @throws ENOMEM The process cannot allocate more memory.
*/
void* naive_extalloc(void*, size_t) /* sic! we limit ourself to ASCII */
__GCC_ONLY(__attribute__((__nonnull__, __warn_unused_result__)));
/**
* This macro calls `fast_free` and then sets the pointer to `NULL`,
* so that another attempt to free the segment will not crash the process.
*/
#define FAST_FREE(segment) (fast_free(segment), (segment) = NULL);
/**
* This macro calls `secure_free` and then sets the pointer to `NULL`,
* so that another attempt to free the segment will not crash the process.
*/
#define SECURE_FREE(segment) (secure_free(segment), (segment) = NULL);
#endif
#endif
|