diff options
author | Jon Lund Steffensen <jonlst@gmail.com> | 2009-12-23 17:33:17 +0100 |
---|---|---|
committer | Jon Lund Steffensen <jonlst@gmail.com> | 2009-12-23 17:33:17 +0100 |
commit | 03dcd5d78a8cd5a9706f174f32cdfe8649272904 (patch) | |
tree | 2e84bc0e471d47c9ad1c3b1ca2d8e07d3ff65b59 /src/solar.c | |
parent | Move RandR code to separate file. (diff) | |
download | redshift-ng-03dcd5d78a8cd5a9706f174f32cdfe8649272904.tar.gz redshift-ng-03dcd5d78a8cd5a9706f174f32cdfe8649272904.tar.bz2 redshift-ng-03dcd5d78a8cd5a9706f174f32cdfe8649272904.tar.xz |
Move source and headers to src dir.
Diffstat (limited to 'src/solar.c')
-rw-r--r-- | src/solar.c | 318 |
1 files changed, 318 insertions, 0 deletions
diff --git a/src/solar.c b/src/solar.c new file mode 100644 index 0000000..2d66fff --- /dev/null +++ b/src/solar.c @@ -0,0 +1,318 @@ +/* solar.c -- Solar position source + This file is part of Redshift. + + Redshift is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Redshift is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with Redshift. If not, see <http://www.gnu.org/licenses/>. + + Copyright (c) 2009 Jon Lund Steffensen <jonlst@gmail.com> +*/ + +/* Ported from javascript code by U.S. Department of Commerce, + National Oceanic & Atmospheric Administration: + http://www.srrb.noaa.gov/highlights/sunrise/calcdetails.html + It is based on equations from "Astronomical Algorithms" by + Jean Meeus. */ + +#include <math.h> +#include <time.h> + +#include "solar.h" + +#define RAD(x) ((x)*(M_PI/180)) +#define DEG(x) ((x)*(180/M_PI)) + + +/* Angels of various times of day. */ +static const double time_angle[] = { + [SOLAR_TIME_ASTRO_DAWN] = RAD(-90.0 + SOLAR_ASTRO_TWILIGHT_ELEV), + [SOLAR_TIME_NAUT_DAWN] = RAD(-90.0 + SOLAR_NAUT_TWILIGHT_ELEV), + [SOLAR_TIME_CIVIL_DAWN] = RAD(-90.0 + SOLAR_CIVIL_TWILIGHT_ELEV), + [SOLAR_TIME_SUNRISE] = RAD(-90.0 + SOLAR_DAYTIME_ELEV), + [SOLAR_TIME_NOON] = RAD(0.0), + [SOLAR_TIME_SUNSET] = RAD(90.0 - SOLAR_DAYTIME_ELEV), + [SOLAR_TIME_CIVIL_DUSK] = RAD(90.0 - SOLAR_CIVIL_TWILIGHT_ELEV), + [SOLAR_TIME_NAUT_DUSK] = RAD(90.0 - SOLAR_NAUT_TWILIGHT_ELEV), + [SOLAR_TIME_ASTRO_DUSK] = RAD(90.0 - SOLAR_ASTRO_TWILIGHT_ELEV) +}; + + +/* Unix time from Julian day */ +static time_t +unix_time_from_jd(double jd) +{ + return 86400.0*(jd - 2440587.5); +} + +/* Julian day from unix time */ +static double +jd_from_unix_time(time_t t) +{ + return (t / 86400.0) + 2440587.5; +} + +/* Julian centuries since J2000.0 from Julian day */ +static double +jcent_from_jd(double jd) +{ + return (jd - 2451545.0) / 36525.0; +} + +/* Julian day from Julian centuries since J2000.0 */ +static double +jd_from_jcent(double t) +{ + return 36525.0*t + 2451545.0; +} + +/* Geometric mean longitude of the sun. + t: Julian centuries since J2000.0 + Return: Geometric mean logitude in radians. */ +static double +sun_geom_mean_lon(double t) +{ + /* FIXME returned value should always be positive */ + return RAD(fmod(280.46646 + t*(36000.76983 + t*0.0003032), 360)); +} + +/* Geometric mean anomaly of the sun. + t: Julian centuries since J2000.0 + Return: Geometric mean anomaly in radians. */ +static double +sun_geom_mean_anomaly(double t) +{ + return RAD(357.52911 + t*(35999.05029 - t*0.0001537)); +} + +/* Eccentricity of earth orbit. + t: Julian centuries since J2000.0 + Return: Eccentricity (unitless). */ +static double +earth_orbit_eccentricity(double t) +{ + return 0.016708634 - t*(0.000042037 + t*0.0000001267); +} + +/* Equation of center of the sun. + t: Julian centuries since J2000.0 + Return: Center(?) in radians */ +static double +sun_equation_of_center(double t) +{ + /* Use the first three terms of the equation. */ + double m = sun_geom_mean_anomaly(t); + double c = sin(m)*(1.914602 - t*(0.004817 + 0.000014*t)) + + sin(2*m)*(0.019993 - 0.000101*t) + + sin(3*m)*0.000289; + return RAD(c); +} + +/* True longitude of the sun. + t: Julian centuries since J2000.0 + Return: True longitude in radians */ +static double +sun_true_lon(double t) +{ + double l_0 = sun_geom_mean_lon(t); + double c = sun_equation_of_center(t); + return l_0 + c; +} + +/* Apparent longitude of the sun. (Right ascension). + t: Julian centuries since J2000.0 + Return: Apparent longitude in radians */ +static double +sun_apparent_lon(double t) +{ + double o = sun_true_lon(t); + return RAD(DEG(o) - 0.00569 - 0.00478*sin(RAD(125.04 - 1934.136*t))); +} + +/* Mean obliquity of the ecliptic + t: Julian centuries since J2000.0 + Return: Mean obliquity in radians */ +static double +mean_ecliptic_obliquity(double t) +{ + double sec = 21.448 - t*(46.815 + t*(0.00059 - t*0.001813)); + return RAD(23.0 + (26.0 + (sec/60.0))/60.0); +} + +/* Corrected obliquity of the ecliptic. + t: Julian centuries since J2000.0 + Return: Currected obliquity in radians */ +static double +obliquity_corr(double t) +{ + double e_0 = mean_ecliptic_obliquity(t); + double omega = 125.04 - t*1934.136; + return RAD(DEG(e_0) + 0.00256*cos(RAD(omega))); +} + +/* Declination of the sun. + t: Julian centuries since J2000.0 + Return: Declination in radians */ +static double +solar_declination(double t) +{ + double e = obliquity_corr(t); + double lambda = sun_apparent_lon(t); + return asin(sin(e)*sin(lambda)); +} + +/* Difference between true solar time and mean solar time. + t: Julian centuries since J2000.0 + Return: Difference in minutes */ +static double +equation_of_time(double t) +{ + double epsilon = obliquity_corr(t); + double l_0 = sun_geom_mean_lon(t); + double e = earth_orbit_eccentricity(t); + double m = sun_geom_mean_anomaly(t); + double y = pow(tan(epsilon/2.0), 2.0); + + double eq_time = y*sin(2*l_0) - 2*e*sin(m) + + 4*e*y*sin(m)*cos(2*l_0) - + 0.5*y*y*sin(4*l_0) - + 1.25*e*e*sin(2*m); + return 4*DEG(eq_time); +} + +/* Hour angle at the location for the given angular elevation. + lat: Latitude of location in degrees + decl: Declination in radians + elev: Angular elevation angle in radians + Return: Hour angle in radians */ +static double +hour_angle_from_elevation(double lat, double decl, double elev) +{ + double omega = acos((cos(fabs(elev)) - sin(RAD(lat))*sin(decl))/ + (cos(RAD(lat))*cos(decl))); + return copysign(omega, -elev); +} + +/* Angular elevation at the location for the given hour angle. + lat: Latitude of location in degrees + decl: Declination in radians + ha: Hour angle in radians + Return: Angular elevation in radians */ +static double +elevation_from_hour_angle(double lat, double decl, double ha) +{ + return asin(cos(ha)*cos(RAD(lat))*cos(decl) + + sin(RAD(lat))*sin(decl)); +} + +/* Time of apparent solar noon of location on earth. + t: Julian centuries since J2000.0 + lon: Longitude of location in degrees + Return: Time difference from mean solar midnigth in minutes */ +static double +time_of_solar_noon(double t, double lon) +{ + /* First pass uses approximate solar noon to + calculate equation of time. */ + double t_noon = jcent_from_jd(jd_from_jcent(t) - lon/360.0); + double eq_time = equation_of_time(t_noon); + double sol_noon = 720 - 4*lon - eq_time; + + /* Recalculate using new solar noon. */ + t_noon = jcent_from_jd(jd_from_jcent(t) - 0.5 + sol_noon/1440.0); + eq_time = equation_of_time(t_noon); + sol_noon = 720 - 4*lon - eq_time; + + /* No need to do more iterations */ + return sol_noon; +} + +/* Time of given apparent solar angular elevation of location on earth. + t: Julian centuries since J2000.0 + t_noon: Apparent solar noon in Julian centuries since J2000.0 + lat: Latitude of location in degrees + lon: Longtitude of location in degrees + elev: Solar angular elevation in radians + Return: Time difference from mean solar midnight in minutes */ +static double +time_of_solar_elevation(double t, double t_noon, + double lat, double lon, double elev) +{ + /* First pass uses approximate sunrise to + calculate equation of time. */ + double eq_time = equation_of_time(t_noon); + double sol_decl = solar_declination(t_noon); + double ha = hour_angle_from_elevation(lat, sol_decl, elev); + double sol_offset = 720 - 4*(lon + DEG(ha)) - eq_time; + + /* Recalculate using new sunrise. */ + double t_rise = jcent_from_jd(jd_from_jcent(t) + sol_offset/1440.0); + eq_time = equation_of_time(t_rise); + sol_decl = solar_declination(t_rise); + ha = hour_angle_from_elevation(lat, sol_decl, elev); + sol_offset = 720 - 4*(lon + DEG(ha)) - eq_time; + + /* No need to do more iterations */ + return sol_offset; +} + +/* Solar angular elevation at the given location and time. + t: Julian centuries since J2000.0 + lat: Latitude of location + lon: Longitude of location + Return: Solar angular elevation in radians */ +static double +solar_elevation_from_time(double t, double lat, double lon) +{ + /* Minutes from midnight */ + double jd = jd_from_jcent(t); + double offset = (jd - round(jd) - 0.5)*1440.0; + + double eq_time = equation_of_time(t); + double ha = RAD((720 - offset - eq_time)/4 - lon); + double decl = solar_declination(t); + return elevation_from_hour_angle(lat, decl, ha); +} + +double +solar_elevation(time_t date, double lat, double lon) +{ + double jd = jd_from_unix_time(date); + return DEG(solar_elevation_from_time(jcent_from_jd(jd), lat, lon)); +} + +void +solar_table_fill(time_t date, double lat, double lon, time_t *table) +{ + /* Calculate Julian day */ + double jd = jd_from_unix_time(date); + + /* Calculate Julian day number */ + double jdn = round(jd); + double t = jcent_from_jd(jdn); + + /* Calculate apparent solar noon */ + double sol_noon = time_of_solar_noon(t, lon); + double j_noon = jdn - 0.5 + sol_noon/1440.0; + double t_noon = jcent_from_jd(j_noon); + table[SOLAR_TIME_NOON] = unix_time_from_jd(j_noon); + + /* Calculate solar midnight */ + table[SOLAR_TIME_MIDNIGHT] = unix_time_from_jd(j_noon + 0.5); + + /* Calulate absoute time of other phenomena */ + for (int i = 2; i < SOLAR_TIME_MAX; i++) { + double angle = time_angle[i]; + double offset = + time_of_solar_elevation(t, t_noon, lat, lon, angle); + table[i] = unix_time_from_jd(jdn - 0.5 + offset/1440.0); + } +} |