1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
/**
* Copyright © 2016 Mattias Andrée <maandree@member.fsf.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <math.h>
#include <time.h>
#include <errno.h>
/**
* Get current Julian Centuries time (100 Julian days since J2000.)
*
* @return The current Julian Centuries time.
*
* @throws 0 On success.
* @throws Any error specified for clock_gettime(3) on error.
*/
static double
julian_centuries()
{
struct timespec now;
double tm;
#if defined(CLOCK_REALTIME_COARSE)
if (clock_gettime(CLOCK_REALTIME_COARSE, &now))
#else
if (clock_gettime(CLOCK_REALTIME, &now))
#endif
return 0.0;
tm = (double)(now.tv_nsec);
tm /= 1000000000.0;
tm += (double)(now.tv_sec);
tm = (tm / 86400.0 + 2440587.5 - 2451545.0) / 36525.0;
return errno = 0, tm;
}
/**
* Convert a Julian Centuries timestamp to a Julian Day timestamp.
*
* @param tm The time in Julian Centuries
* @return The time in Julian Days
*/
static inline double
julian_centuries_to_julian_day(double tm)
{
return tm * 36525.0 + 2451545.0;
}
/**
* Convert an angle (or otherwise) from degrees to radians.
*
* @param deg The angle in degrees.
* @param The angle in radians.
*/
static inline double
radians(double deg)
{
return deg * (double)M_PI / 180.0;
}
/**
* Convert an angle (or otherwise) from radians to degrees.
*
* @param rad The angle in radians.
* @param The angle in degrees.
*/
static inline double
degrees(double rad)
{
return rad * 180.0 / (double)M_PI;
}
/**
* Calculates the Sun's elevation from the solar hour angle
*
* @param longitude The longitude in degrees eastwards.
* from Greenwich, negative for westwards.
* @param declination The declination, in radians.
* @param hour_angle The solar hour angle, in radians.
* @return The Sun's elevation, in radians.
*/
static inline double
elevation_from_hour_angle(double latitude, double declination, double hour_angle)
{
double rc = cos(radians(latitude));
rc *= cos(hour_angle) * cos(declination);
rc += sin(radians(latitude)) * sin(declination);
return asin(rc);
}
/**
* Calculates the Sun's geometric mean longitude.
*
* @param tm The time in Julian Centuries.
* @return The Sun's geometric mean longitude in radians.
*/
static inline double
sun_geometric_mean_longitude(double tm)
{
double rc = pow(0.0003032 * tm, 2.0) + 36000.76983 * tm + 280.46646;
return radians(fmod(rc, 360.0));
/*
CANNIBALISERS:
The result of this function should always be positive, this
means that after division modulo 360 but before `radians`,
you will need to add 360 if the value is negative. This can
only happen if `tm` is negative, which can only happen for date
times before 2000-(01)Jan-01 12:00:00 UTC par division modulo
implementations with the signess of at least the left operand.
More precively, it happens between circa 1970-(01)Jan-11
16:09:02 UTC and circa 374702470660351740 seconds before
January 1, 1970 00:00 UTC, which is so far back in time
it cannot be reliable pinned down to the right year, but it
is without a shadow of a doubt looooong before the Earth
was formed, is right up there with the age of the Milky Way
and the universe itself.
*/
}
/**
* Calculates the Sun's geometric mean anomaly.
*
* @param tm The time in Julian Centuries.
* @return The Sun's geometric mean anomaly in radians.
*/
static inline double
sun_geometric_mean_anomaly(double tm)
{
return radians(pow(-0.0001537 * tm, 2.0) + 35999.05029 * tm + 357.52911);
}
/**
* Calculates the Earth's orbit eccentricity.
*
* @param tm The time in Julian Centuries.
* @return The Earth's orbit eccentricity.
*/
static inline double
earth_orbit_eccentricity(double tm)
{
return pow(-0.0000001267 * tm, 2.0) - 0.000042037 * tm + 0.016708634;
}
/**
* Calculates the Sun's equation of the centre, the difference
* between the true anomaly and the mean anomaly.
*
* @param tm The time in Julian Centuries.
* @return The Sun's equation of the centre, in radians.
*/
static inline double
sun_equation_of_centre(double tm)
{
double a = sun_geometric_mean_anomaly(tm), rc;
rc = sin(1.0 * a) * (pow(-0.000014 * tm, 2.0) - 0.004817 * tm + 1.914602);
rc += sin(2.0 * a) * (-0.000101 * tm + 0.019993);
rc += sin(3.0 * a) * 0.000289;
return radians(rc);
}
/**
* Calculates the Sun's real longitudinal position.
*
* @param tm The time in Julian Centuries.
* @return The longitude, in radians.
*/
static inline double
sun_real_longitude(double tm)
{
double rc = sun_geometric_mean_longitude(tm);
return rc + sun_equation_of_centre(tm);
}
/**
* Calculates the Sun's apparent longitudinal position.
*
* @param tm The time in Julian Centuries.
* @return The longitude, in radians.
*/
static inline double
sun_apparent_longitude(double tm)
{
double rc = degrees(sun_real_longitude(tm)) - 0.00569;
rc -= 0.00478 * sin(radians(-1934.136 * tm + 125.04));
return radians(rc);
}
/**
* Calculates the mean ecliptic obliquity of the Sun's
* apparent motion without variation correction.
*
* @param tm The time in Julian Centuries.
* @return The uncorrected mean obliquity, in radians.
*/
static double
mean_ecliptic_obliquity(double tm)
{
double rc = pow(0.001813 * tm, 3.0) - pow(0.00059 * tm, 2.0) - 46.815 * tm + 21.448;
rc = 26 + rc / 60;
rc = 23 + rc / 60;
return radians(rc);
}
/**
* Calculates the mean ecliptic obliquity of the Sun's
* parent motion with variation correction.
*
* @param tm The time in Julian Centuries.
* @return The mean obliquity, in radians.
*/
static double
corrected_mean_ecliptic_obliquity(double tm)
{
double rc = -1934.136 * tm + 125.04;
rc = 0.00256 * cos(radians(rc));
rc += degrees(mean_ecliptic_obliquity(tm));
return radians(rc);
}
/**
* Calculates the Sun's declination.
*
* @param tm The time in Julian Centuries.
* @return The Sun's declination, in radian.
*/
static inline double
solar_declination(double tm)
{
double rc = sin(corrected_mean_ecliptic_obliquity(tm));
rc *= sin(sun_apparent_longitude(tm));
return asin(rc);
}
/**
* Calculates the equation of time, the discrepancy
* between apparent and mean solar time.
*
* @param tm The time in Julian Centuries.
* @return The equation of time, in degrees.
*/
static inline double
equation_of_time(double tm)
{
double l, e, m, y, rc;
l = sun_geometric_mean_longitude(tm);
e = earth_orbit_eccentricity(tm);
m = sun_geometric_mean_anomaly(tm);
y = corrected_mean_ecliptic_obliquity(tm);
y = pow(tan(y / 2.0), 2.0);
rc = y * sin(2.0 * l);
rc += (4.0 * y * cos(2.0 * l) - 2.0) * e * sin(m);
rc -= pow(0.5 * y, 2.0) * sin(4.0 * l);
rc -= pow(1.25 * e, 2.0) * sin(2.0 * m);
return 4.0 * degrees(rc);
}
/**
* Calculates the Sun's elevation as apparent.
* from a geographical position.
*
* @param tm The time in Julian Centuries.
* @param latitude The latitude in degrees northwards from
* the equator, negative for southwards.
* @param longitude The longitude in degrees eastwards from
* Greenwich, negative for westwards.
* @return The Sun's apparent elevation at the specified time as seen
* from the specified position, measured in radians.
*/
static inline double
solar_elevation_from_time(double tm, double latitude, double longitude)
{
double rc = julian_centuries_to_julian_day(tm);
rc = (rc - round(rc) - 0.5) * 1440;
rc = 720.0 - rc - equation_of_time(tm);
rc = radians(rc / 4.0 - longitude);
return elevation_from_hour_angle(latitude, solar_declination(tm), rc);
}
/**
* Calculates the Sun's elevation as apparent.
* from a geographical position.
*
* @param latitude The latitude in degrees northwards from
* the equator, negative for southwards.
* @param longitude The longitude in degrees eastwards from
* Greenwich, negative for westwards.
* @return The Sun's apparent elevation as seen, right now,
* from the specified position, measured in degrees.
*
* @throws 0 On success.
* @throws Any error specified for clock_gettime(3) on error.
*/
double
solar_elevation(double latitude, double longitude)
{
double tm = julian_centuries();
return errno ? -1 : degrees(solar_elevation_from_time(rm, latitude, longitude));
}
|