1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
/**
* Copyright © 2016 Mattias Andrée <maandree@member.fsf.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "blackbody.h"
#include <unistd.h>
#include <math.h>
#include <errno.h>
/**
* The highest colour temperature in the table.
*/
#define HIGHEST 40000
/**
* The lowest colour temperature in the table.
*/
#define LOWEST 1000
/**
* The temperature difference between the colours in the table.
*/
#define DELTA 100
/**
* Convert from CIE xyY to [0, 1] sRGB.
*
* @param x The 'x' component.
* @param y The 'y' component.
* @param Y The 'Y' component.
* @param r Output parameter for the “red” value.
* (Seriously, sRGB red is orange, just look at it fullscreen.)
* @param g Output parameter for the green value.
* @param b Output parameter for the blue value.
*/
static void
ciexyy_to_srgb(double x, double y, double Y, double *r, double *g, double *b)
{
#define SRGB(C) (((C) <= 0.0031308) ? (12.92 * (C)) : ((1.0 + 0.055) * pow((C), 1.0 / 2.4) - 0.055))
double X, Z;
/* Convert CIE xyY to CIE XYZ. */
X = Y * (y == 0 ? 0 : (x / y));
Z = Y * (y == 0 ? 0 : ((1 - x - y) / y));
/* Convert CIE XYZ to [0, 1] linear RGB. (ciexyz_to_linear) */
*r = ( 3.240450 * X) + (-1.537140 * Y) + (-0.4985320 * Z);
*g = (-0.969266 * X) + ( 1.876010 * Y) + ( 0.0415561 * Z);
*b = (0.0556434 * X) + (-0.204026 * Y) + ( 1.0572300 * Z);
/* Convert [0, 1] linear RGB to [0, 1] sRGB. */
SRGB(*r), SRGB(*g), SRGB(*b);
}
/**
* Perform linear interpolation (considered very good)
* between the CIE xyY values for two colour temperatures
* and convert the result to sRGB. The two colours should
* be the closest below the desired colour temperature,
* and the closest above the desired colour temperature.
*
* @param x1 The 'x' component for the low colour.
* @param y1 The 'y' component for the low colour.
* @param x2 The 'x' component for the high colour.
* @param y2 The 'y' component for the high colour.
* @param temp The desired colour temperature.
* @param r Output parameter for the “red” value.
* @param g Output parameter for the green value.
* @param b Output parameter for the blue value.
*/
static void
interpolate(double x1, double y1, double x2, double y2, double temp, double *r, double *g, double *b)
{
double weight = fmod(temp, (double)DELTA) / (double)DELTA;
double x = x1 * (1 - weight) + x2 * weight;
double y = y1 * (1 - weight) + y2 * weight;
ciexyy_to_srgb(x, y, 1.0, r, g, b);
}
/**
* Get the [0, 1] sRGB values of a colour temperature.
*
* @param fd File descriptor for the colour table.
* @param temp The desired colour temperature.
* @param r Output parameter for the “red” value.
* @param g Output parameter for the green value.
* @param b Output parameter for the blue value.
* @return 0 on succeess, -1 on error.
*
* @throws 0 The file did not have the expected size.
* @throws EDOM The selected temperature is below 1000 K.
*/
int
get_colour(int fd, long int temp, double *r, double *g, double *b)
{
double values[10]; /* low:x,y,r,g,b + high:x,y,r,g,b */
off_t offset;
double max;
/* We do not have any values for above 40 000 K, but
* the differences will be unnoticeable, perhaps even
* unencodeable. */
if (temp > HIGHEST) temp = HIGHEST;
/* Things do not glow below 1000 K. Yes, fire is hot! */
if (temp < LOWEST) return errno = EDOM, -1;
/* Read table. */
offset = ((off_t)temp - LOWEST) / DELTA;
offset *= (off_t)(5 * sizeof(double));
errno = 0;
if (pread(fd, values, sizeof(values), offset) < (ssize_t)sizeof(values))
return -1;
/* Get colour. */
if (temp % DELTA)
interpolate(values[0], values[1], values[6], values[7], (double)temp, r, g, b);
else
*r = values[2], *g = values[3], *b = values[4];
/* Adjust colours for use. */
max = fmax(fmax(fabs(*r), fabs(*g)), fabs(*b));
if (max != 0)
*r /= max, *g /= max, *b /= max;
*r = *r > 0.0 ? *r : 0.0;
*g = *g > 0.0 ? *g : 0.0;
*b = *b > 0.0 ? *b : 0.0;
return 0;
}
|