1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
|
/**
* mds — A micro-display server
* Copyright © 2014 Mattias Andrée (maandree@member.fsf.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "simplify-tree.h"
#include "globals.h"
#include <stdlib.h>
#include <string.h>
#include <alloca.h>
/**
* This process's value for `mds_kbdc_tree_t.processed`
*/
#define PROCESS_LEVEL 2
/**
* Tree type constant shortener
*/
#define C(TYPE) MDS_KBDC_TREE_TYPE_##TYPE
/**
* Add an error to the error list
*
* @param NODE:const mds_kbdc_tree_t* The node the triggered the error
* @param SEVERITY:identifier * in `MDS_KBDC_PARSE_ERROR_*` to indicate severity
* @param ...:const char*, ... Error description format string and arguments
* @scope error:mds_kbdc_parse_error_t* Variable where the new error will be stored
*/
#define NEW_ERROR(NODE, SEVERITY, ...) \
NEW_ERROR_(result, SEVERITY, 1, (NODE)->loc_line, \
(NODE)->loc_start, (NODE)->loc_end, 1, __VA_ARGS__)
/**
* Remove ‘.’:s
*
* @param START:identifier The member of `tree` that is cleaned from ‘.’:s
* @scope tree:mds_kbdc_tree_t* The tree from where the ‘.’:s are being removed
* @scope here:mds_kbdc_tree_t** Help variable that must be available for use
* @scope argument:mds_kbdc_tree_t* Help variable that must be available for use
*/
#define REMOVE_NOTHING(START) \
do \
{ \
long processed = tree->processed; \
tree->processed = PROCESS_LEVEL; \
for (here = &(tree->START); *here;) \
if ((*here)->type != C(NOTHING)) \
here = &((*here)->next); \
else \
while (*here && (*here)->type == C(NOTHING)) \
{ \
argument = (*here)->next, (*here)->next = NULL; \
if ((processed != PROCESS_LEVEL) && ((*here)->processed != PROCESS_LEVEL)) \
NEW_ERROR(*here, WARNING, "‘.’ outside alternation has no effect"); \
mds_kbdc_tree_free(*here); \
*here = argument; \
} \
} \
while (0)
/**
* Flatten an alternation of orderered subsequence, that is,
* insert its interior in place of it and move its next
* sibling to the next of the interior
*
* @param argument:mds_kbdc_tree_t* The argument to flatten
* @scope here:mds_kbdc_tree_t** Pointer to the space where the argument was found
* @scope temp:mds_kbdc_tree_t* Help variable that must be available for use
*/
#define FLATTEN(argument) \
do \
{ \
/* Remember the alternation/subsequence and the argument that follows it. */ \
mds_kbdc_tree_t* eliminated_argument = argument; \
temp = argument->next; \
/* Find the last alternative/element. */ \
for (argument->next = argument->ordered.inner; argument->next;) \
argument = argument->next; \
/* Attach the argument that was after the alternation/subsequence to the */ \
/* end of the alternation/subsequence, that is, flatten the right side. */ \
argument->next = temp; \
/* Flatten the left side. */ \
*here = eliminated_argument->next; \
/* Free the memory of the alternation/subsequence. */ \
eliminated_argument->ordered.inner = NULL; \
eliminated_argument->next = NULL; \
mds_kbdc_tree_free(eliminated_argument); \
} \
while (0)
/**
* Variable whether the latest created error is stored
*/
static mds_kbdc_parse_error_t* error;
/**
* The parameter of `simplify_tree`
*/
static mds_kbdc_parsed_t* restrict result;
/**
* Simplify a subtree
*
* @param tree The tree
* @return Zero on success, -1 on error
*/
static int simplify(mds_kbdc_tree_t* restrict tree);
/**
* Simplify an unordered subsequence-subtree
*
* @param tree The unordered subsequence-subtree
* @return Zero on success, -1 on error
*/
static int simplify_unordered(mds_kbdc_tree_unordered_t* restrict tree);
/**
* Eliminiate an alternation
*
* @param tree The statement where the alternation is found
* @param argument The argument to eliminate
* @param argument_index The index of the argument to eliminate
* @return Zero on sucess, -1 on error
*/
static int eliminate_alternation(mds_kbdc_tree_t* tree, mds_kbdc_tree_t* argument, size_t argument_index)
{
mds_kbdc_tree_t** here;
mds_kbdc_tree_t* first;
mds_kbdc_tree_t* last;
mds_kbdc_tree_t* new_tree;
mds_kbdc_tree_t* alternative;
mds_kbdc_tree_t* next_statement;
mds_kbdc_tree_t* next_alternative;
mds_kbdc_tree_t* new_argument;
size_t i;
/* Detach next statement, we do not want to duplicate all following statements. */
next_statement = tree->next, tree->next = NULL;
/* Detach alternation, we replace it in all duplcates,
no need to duplicate all alternatives. */
alternative = argument->alternation.inner, argument->alternation.inner = NULL;
/* Eliminate. */
for (first = last = NULL; alternative; alternative = next_alternative)
{
/* Duplicate statement. */
if (new_tree = mds_kbdc_tree_dup(tree), new_tree == NULL)
{
int saved_errno = errno;
argument->alternation.inner = alternative;
tree->next = next_statement;
return errno = saved_errno, -1;
}
/* Join trees. */
if (last)
last->next = new_tree;
last = new_tree;
first = first ? first : new_tree;
/* Jump to the alternation. */
here = &(new_tree->macro_call.arguments); /* `new_tree->macro_call.arguments` and
* `new_tree->map.sequence` as the same address. */
for (new_argument = *here, i = 0; i < argument_index; i++, here = &((*here)->next))
new_argument = new_argument->next;
/* Detach alternative. */
next_alternative = alternative->next;
/* Right-join alternative. */
alternative->next = new_argument->next, new_argument->next = NULL;
mds_kbdc_tree_free(new_argument);
/* Left-join alternative. */
*here = alternative;
}
/* Replace the statement with the first generated statement without the alternation. */
mds_kbdc_tree_destroy((mds_kbdc_tree_t*)tree);
memcpy(tree, first, sizeof(mds_kbdc_tree_t));
if (first == last) last = (mds_kbdc_tree_t*)tree;
free(first);
/* Reattach the statement that followed to the last generated statement. */
last->next = next_statement;
return 0;
}
/**
* Simplify a macro call-subtree
*
* @param tree The macro call-subtree
* @return Zero on success, -1 on error
*/
static int simplify_macro_call(mds_kbdc_tree_macro_call_t* restrict tree)
{
mds_kbdc_tree_t* argument;
mds_kbdc_tree_t* dup_arguments = NULL;
mds_kbdc_tree_t** here;
size_t argument_index = 0;
int saved_errno;
/* Simplify arguments. */
for (argument = tree->arguments; argument; argument = argument->next)
fail_if (simplify(argument));
/* Remove ‘.’:s. */
REMOVE_NOTHING(arguments);
/* Copy arguments. */
if (tree->arguments == NULL)
return 0;
fail_if ((dup_arguments = mds_kbdc_tree_dup(tree->arguments), dup_arguments == NULL));
/* Eliminate alterations. */
for (argument = dup_arguments; argument; argument = argument->next, argument_index++)
if (argument->type == C(ALTERNATION))
fail_if (eliminate_alternation((mds_kbdc_tree_t*)tree, argument, argument_index));
mds_kbdc_tree_free(dup_arguments), dup_arguments = NULL;
/* Example of what will happend:
*
* my_macro([1 2] [1 2] [1 2]) ## call 1
*
* simplify_macro_call on call 1
* after processing argument 1
* my_macro(1 [1 2] [1 2]) ## call 1
* my_macro(2 [1 2] [1 2]) ## call 5
* after processing argument 2
* my_macro(1 1 [1 2]) ## call 1
* my_macro(1 2 [1 2]) ## call 3
* my_macro(2 [1 2] [1 2]) ## call 5
* after processing argument 3
* my_macro(1 1 1) ## call 1
* my_macro(1 1 2) ## call 2
* my_macro(1 2 [1 2]) ## call 3
* my_macro(2 [1 2] [1 2]) ## call 5
*
* no difference after simplify_macro_call on call 2
*
* simplify_macro_call on call 3
* no difference after processing argument 1
* no difference after processing argument 2
* after processing argument 3
* my_macro(1 1 1) ## (call 1)
* my_macro(1 1 2) ## (call 2)
* my_macro(1 2 1) ## call 3
* my_macro(1 2 1) ## call 4
* my_macro(2 [1 2] [1 2]) ## call 5
*
* no difference after simplify_macro_call on call 4
*
* simplify_macro_call on call 5
* no difference after processing argument 1
* after processing argument 2
* my_macro(1 1 1) ## (call 1)
* my_macro(1 1 2) ## (call 2)
* my_macro(1 2 1) ## (call 3)
* my_macro(1 2 2) ## (call 4)
* my_macro(2 1 [1 2]) ## call 5
* my_macro(2 2 [1 2]) ## call 7
* after processing argument 3
* my_macro(1 1 1) ## (call 1)
* my_macro(1 1 2) ## (call 2)
* my_macro(1 2 1) ## (call 3)
* my_macro(1 2 2) ## (call 4)
* my_macro(2 1 1) ## call 5
* my_macro(2 1 2) ## call 6
* my_macro(2 2 [1 2]) ## call 7
*
* no difference after simplify_macro_call on call 6
*
* simplify_macro_call on call 7
* no difference after processing argument 1
* no difference after processing argument 2
* after processing argument 3
* my_macro(1 1 1) ## (call 1)
* my_macro(1 1 2) ## (call 2)
* my_macro(1 2 1) ## (call 3)
* my_macro(1 2 2) ## (call 4)
* my_macro(2 1 1) ## (call 5)
* my_macro(2 1 2) ## (call 6)
* my_macro(2 2 1) ## call 7
* my_macro(2 2 2) ## call 8
*
* no difference after simplify_macro_call on call 8
*
* Nothings (‘.’) are removed before processing the alternations.
*/
return 0;
pfail:
saved_errno = errno;
mds_kbdc_tree_free(dup_arguments);
return errno = saved_errno, -1;
}
/**
* Check for bad things in a value statement for before the simplification process
*
* @param tree The value statement-tree
* @return Zero on success, -1 on error
*/
static int check_value_statement_before_simplification(mds_kbdc_tree_map_t* restrict tree)
{
again:
/* Check for alternation. */
if ((tree->sequence->type == C(ALTERNATION)) && (tree->processed != PROCESS_LEVEL))
NEW_ERROR(tree->sequence, WARNING,
"alternated value statement is undefined unless the alternatives are identical");
/* Check for unordered. */
if (tree->sequence->type != C(UNORDERED))
return 0;
if (tree->processed != PROCESS_LEVEL)
NEW_ERROR(tree->sequence, WARNING, "use of sequence in value statement is discouraged");
/* Simplify argument and start over. */
fail_if(simplify(tree->sequence));
goto again;
pfail:
return -1;
}
/**
* Check for bad things in a value statement for after the simplification process
*
* @param tree The value statement-tree
* @return Zero on success, -1 on error
*/
static int check_value_statement_after_simplification(mds_kbdc_tree_map_t* restrict tree)
{
/* Check that there is only one value. */
if (tree->sequence->next)
NEW_ERROR(tree->sequence->next, ERROR, "more the one value in value statement");
/* Check the type of the value */
if (tree->sequence->type != C(STRING))
NEW_ERROR(tree->sequence, ERROR, "bad value type");
return 0;
pfail:
return -1;
}
/**
* Simplify a mapping-subtree
*
* @param tree The mapping-subtree
* @return Zero on success, -1 on error
*/
static int simplify_map(mds_kbdc_tree_map_t* restrict tree)
{
mds_kbdc_tree_t* argument;
mds_kbdc_tree_t** here;
mds_kbdc_tree_t* dup_sequence = NULL;
mds_kbdc_tree_t* temp;
size_t argument_index;
int redo = 0, need_reelimination, saved_errno;
/* Check for bad things in the result. */
for (argument = tree->result; argument; argument = argument->next)
if ((argument->type != C(KEYS)) && (argument->type != C(STRING)))
NEW_ERROR(argument, ERROR, "not allowed in mapping output");
/* Valid value properties. */
if (tree->result == NULL)
fail_if(check_value_statement_before_simplification(tree));
/* Simplify sequence. */
for (argument = tree->sequence; argument; argument = argument->next)
fail_if (simplify(argument));
/* Test predicted emptyness. */
for (argument = tree->sequence; argument; argument = argument->next)
if (argument->type != C(NOTHING))
goto will_not_be_empty;
if (tree->sequence->processed != PROCESS_LEVEL)
{
if (tree->result)
NEW_ERROR(tree->sequence, ERROR, "mapping of null sequence");
else
NEW_ERROR(tree->sequence, ERROR, "nothing in value statement");
}
/* The tree parsing process will not allow a mapping statement
* to start with a ‘.’. Thus if we select to highlight it we
* know that it is either an empty alternation, an empty
* unordered subsequence or a nothing inside an alternation.
* If it is already been processed by the simplifier, it is an
* error because it is an empty alternation or empty unordered
* subsequence, and there is not reason to print an additional
* error. If however it is a nothing inside an alternation we
* know that it is the cause of the error, however possibily
* in conjunction with additional such constructs, but those
* are harder to locate. */
return 0;
will_not_be_empty:
/* Remove ‘.’:s. */
REMOVE_NOTHING(sequence);
/* Because unordered are simplified to alternations of ordered subsequences, which
in turn can contain alternations, possibiled from simplification of nested
unordered sequenceses, we need to reeliminated until there are not alternations. */
for (need_reelimination = 1; need_reelimination ? (need_reelimination = 0, 1) : 0; redo = 0)
{
/* Copy sequence. */
fail_if ((dup_sequence = mds_kbdc_tree_dup(tree->sequence), dup_sequence == NULL));
/* Eliminate alterations, remember, unordered subsequences have
been simplified to alternations of ordered subsequences. */
for (argument_index = 0, argument = dup_sequence; argument; argument = argument->next, argument_index++)
if (argument->type == C(ALTERNATION))
fail_if (eliminate_alternation((mds_kbdc_tree_t*)tree, argument, argument_index));
mds_kbdc_tree_free(dup_sequence), dup_sequence = NULL;
/* Eliminated ordered subsequences. */
for (here = &(tree->sequence); (argument = *here); redo ? (redo = 0) : (here = &(argument->next), 0))
if (argument->type == C(ORDERED))
{
FLATTEN(argument);
redo = 1;
}
else if (argument->type == C(ALTERNATION))
need_reelimination = 1;
}
/* Valid value properties. */
if (tree->result == NULL)
fail_if(check_value_statement_after_simplification(tree));
/* Mapping statements are simplified in a manner similar
* to how macro calls are simplified. However mapping
* statements can also contain unordered subsequences,
* there are translated into alternations of ordered
* subsequences. Thus after the elimination of alternations,
* ordered subsequences are eliminated too.
*
* Example of what will happen, ‘{ }’ represents an
* ordered subsequence:
*
* (1 2) (3 4) : 0 ## mapping 1
*
* simplify_map on mapping 1
* after simplification
* [{1 2} {2 1}] [{3 4} {4 3}] ## mapping 1
* after alternation elimination on argument 1
* {1 2} [{3 4} {4 3}] ## mapping 1
* {2 1} [{3 4} {4 3}] ## mapping 3
* after alternation elimination on argument 2
* {1 2} {3 4} ## mapping 1
* {1 2} {4 3} ## mapping 2
* {2 1} [{3 4} {4 3}] ## mapping 3
* after ordered subsequence elimination
* 1 2 3 4 ## mapping 1
* {1 2} {4 3} ## mapping 2
* {2 1} [{3 4} {4 3}] ## mapping 3
*
* simplify_map on mapping 2
* no difference after simplification
* no difference after alternation elimination on argument 1
* no difference after alternation elimination on argument 2
* after ordered subsequence elimination
* 1 2 3 4 ## (mapping 1)
* 1 2 4 3 ## mapping 2
* {2 1} [{3 4} {4 3}] ## mapping 3
*
* simplify_map on mapping 3
* no difference after simplification
* no difference after alternation elimination on argument 1
* after alternation elimination on argument 2
* 1 2 3 4 ## (mapping 1)
* 1 2 4 3 ## (mapping 2)
* {2 1} {3 4} ## mapping 3
* {2 1} {4 3} ## mapping 4
* after ordered subsequence elimination
* 1 2 3 4 ## (mapping 1)
* 1 2 4 3 ## (mapping 2)
* 2 1 3 4 ## mapping 3
* {2 1} {4 3} ## mapping 4
*
* simplify_map on mapping 4
* no difference after simplification
* no difference after alternation elimination on argument 1
* no difference after alternation elimination on argument 2
* after ordered subsequence elimination
* 1 2 3 4 ## (mapping 1)
* 1 2 4 3 ## (mapping 2)
* 2 1 3 4 ## (mapping 3)
* 2 1 4 3 ## mapping 4
*
* Nothings (‘.’) are removed before processing the alternations.
*/
return 0;
pfail:
saved_errno = errno;
mds_kbdc_tree_free(dup_sequence);
return errno = saved_errno, -1;
}
/**
* Simplify an alternation-subtree
*
* @param tree The alternation-subtree
* @return Zero on success, -1 on error
*/
static int simplify_alternation(mds_kbdc_tree_alternation_t* restrict tree)
{
mds_kbdc_tree_t* argument;
mds_kbdc_tree_t* first_nothing = NULL;
mds_kbdc_tree_t* temp;
mds_kbdc_tree_t** here;
int redo = 0;
/* Test emptyness. */
if (tree->inner == NULL)
{
NEW_ERROR(tree, ERROR, "empty alternation");
tree->type = C(NOTHING);
tree->processed = PROCESS_LEVEL;
return 0;
}
/* Test singletonness. */
if (tree->inner->next == NULL)
{
temp = tree->inner;
NEW_ERROR(tree, WARNING, "singleton alternation");
memcpy(tree, temp, sizeof(mds_kbdc_tree_t));
free(temp);
return simplify((mds_kbdc_tree_t*)tree);
}
/* Simplify. */
for (here = &(tree->inner); (argument = *here); redo ? (redo = 0) : (here = &(argument->next), 0))
if ((argument->type == C(NOTHING)) && (argument->processed != PROCESS_LEVEL))
{
/* Test multiple nothings. */
if (first_nothing == NULL)
first_nothing = argument;
else
{
NEW_ERROR(argument, WARNING, "multiple ‘.’ inside an alternation");
NEW_ERROR(first_nothing, NOTE, "first ‘.’ was here");
}
}
else if (argument->type == C(ALTERNATION))
{
/* Alternation nesting. */
if (argument->processed != PROCESS_LEVEL)
NEW_ERROR(argument, WARNING, "alternation inside alternation is unnessary");
fail_if (simplify_alternation(&(argument->alternation)));
if (argument->type == C(ALTERNATION))
FLATTEN(argument);
redo = 1;
}
else if (argument->type == C(UNORDERED))
{
/* Nesting unordered subsequence,
simplifies to alternation of ordered subsequence, or simpler. */
NEW_ERROR(argument, WARNING, "unordered subsequence inside alternation is discouraged");
fail_if (simplify_unordered(&(argument->unordered)));
redo = 1;
}
return 0;
pfail:
return -1;
}
/**
* Create a chain of ordered subsequence covering all
* permutations of a set of subtrees
*
* @param elements The subtrees, chained
* @return Chain of ordered subsequence, `NULL` on error
*/
static mds_kbdc_tree_t* create_permutations(mds_kbdc_tree_t* elements)
{
mds_kbdc_tree_t* first = NULL;
mds_kbdc_tree_t** here = &first;
mds_kbdc_tree_t** previous_next = &elements;
mds_kbdc_tree_t* argument;
mds_kbdc_tree_t* temp;
mds_kbdc_tree_t* subperms = NULL;
mds_kbdc_tree_t* perm;
mds_kbdc_tree_t ordered;
int saved_errno, no_perms;
/* Error case. */
if (elements == NULL)
return NULL;
/* Base case. */
if (elements->next == NULL)
{
fail_if ((first = mds_kbdc_tree_create(C(ORDERED))) == NULL);
fail_if ((first->ordered.inner = mds_kbdc_tree_dup(elements)) == NULL);
return first;
}
for (previous_next = &elements; (argument = *previous_next); previous_next = &((*previous_next)->next))
{
/* Created ordered alternative for a permutation prototype. */
mds_kbdc_tree_initialise(&ordered, C(ORDERED));
/* Select the first element. */
temp = argument->next, argument->next = NULL;
ordered.ordered.inner = mds_kbdc_tree_dup(argument);
argument->next = temp;
fail_if (ordered.ordered.inner == NULL);
/* Create subpermutations. */
*previous_next = argument->next;
argument->next = NULL;
no_perms = (elements == NULL);
subperms = create_permutations(elements);
argument->next = *previous_next;
*previous_next = argument;
fail_if (no_perms ? 0 : (subperms == NULL));
/* Join first element with subpermutations. */
while (subperms)
{
/* Join. */
fail_if ((perm = mds_kbdc_tree_dup(&ordered), perm == NULL));
perm->ordered.inner->next = subperms->ordered.inner;
subperms->ordered.inner = NULL;
/* Add the permutation to the chain. */
*here = perm;
here = &(perm->next);
/* Select next permutation. */
temp = subperms;
subperms = subperms->next;
temp->next = NULL;
mds_kbdc_tree_free(temp);
}
/* Destroy prototype. */
mds_kbdc_tree_destroy(&ordered);
}
return first;
pfail:
saved_errno = errno;
mds_kbdc_tree_free(first);
mds_kbdc_tree_free(subperms);
mds_kbdc_tree_destroy(&ordered);
errno = saved_errno;
return NULL;
}
/**
* Simplify an unordered subsequence-subtree
*
* @param tree The unordered subsequence-subtree
* @return Zero on success, -1 on error
*/
static int simplify_unordered(mds_kbdc_tree_unordered_t* restrict tree)
{
mds_kbdc_tree_t* arguments;
mds_kbdc_tree_t* argument;
mds_kbdc_tree_t* temp;
mds_kbdc_tree_t** here;
int allow_long = 0;
size_t argument_count;
int argv_force = 0; /* TODO globals.h */
/* Test for ‘(( ))’. */
if (tree->inner && (tree->inner->next == NULL) && (tree->inner->type == C(UNORDERED)))
{
tree->loc_end = tree->inner->loc_end;
temp = tree->inner;
tree->inner = tree->inner->unordered.inner;
temp->unordered.inner = NULL;
mds_kbdc_tree_free(temp);
allow_long = 1;
}
/* Test emptyness. */
if (tree->inner == NULL)
{
NEW_ERROR(tree, ERROR, "empty unordered subsequence");
tree->type = C(NOTHING);
tree->processed = PROCESS_LEVEL;
return 0;
}
/* Test singletonness. */
if (tree->inner->next == NULL)
{
temp = tree->inner;
NEW_ERROR(tree, WARNING, "singleton unordered subsequence");
memcpy(tree, temp, sizeof(mds_kbdc_tree_t));
free(temp);
return simplify((mds_kbdc_tree_t*)tree);
}
/* Remove ‘.’:s. */
REMOVE_NOTHING(inner);
/* Check that the sequnced contained anything else. */
if (tree->inner == NULL)
{
NEW_ERROR(tree, ERROR, "unordered subsequence contained nothing else than ‘.’");
tree->type = C(NOTHING);
tree->processed = PROCESS_LEVEL;
return 0;
}
/* Simplify. */
for (argument = tree->inner, argument_count = 0; argument; argument = argument->next, argument_count++)
if (argument->type == C(ALTERNATION))
{
fail_if (simplify_alternation(&(argument->alternation)));
argument->processed = PROCESS_LEVEL;
}
else if (argument->type == C(UNORDERED))
{
NEW_ERROR(argument, WARNING, "unordered subsequence inside unordered subsequence is discouraged");
fail_if (simplify_unordered(&(argument->unordered)));
argument->processed = PROCESS_LEVEL;
}
/* Check the size of the subsequence. */
if ((argument_count > 5) && (allow_long * argv_force == 0))
{
if (allow_long == 0)
NEW_ERROR(tree->inner, ERROR,
"unordered subsequence longer than 5 elements need double brackets");
else if (argv_force == 0)
NEW_ERROR(tree->inner, ERROR,
"unordered subsequence of size %zu found, requires ‘--force’ to compile", argument_count);
return 0;
}
/* Generate permutations. */
tree->type = C(ALTERNATION);
tree->processed = PROCESS_LEVEL;
arguments = tree->inner;
if (tree->inner = create_permutations(arguments), tree->inner == NULL)
{
if (errno == 0)
{
/* `create_permutations` can return `NULL` without setting `errno`
* if it does not list any permutations. */
NEW_ERROR_(result, INTERNAL_ERROR, 0, 0, 0, 0, 1,
"Fail to create permutations of an unordered sequence");
errno = 0;
}
return tree->inner = arguments, -1;
}
mds_kbdc_tree_free(arguments);
return 0;
pfail:
return -1;
}
/**
* Simplify a subtree
*
* @param tree The tree
* @return Zero on success, -1 on error
*/
static int simplify(mds_kbdc_tree_t* restrict tree)
{
#define s(expr) if ((r = simplify(tree->expr))) return r
#define S(type) if ((r = simplify_##type(&(tree->type)))) return r
int r;
again:
if (tree == NULL)
return 0;
switch (tree->type)
{
case C(INFORMATION): s (information.inner); break;
case C(FUNCTION): s (function.inner); break;
case C(MACRO): s (macro.inner); break;
case C(ASSUMPTION): s (assumption.inner); break;
case C(FOR): s (for_.inner); break;
case C(IF): s (if_.inner); s (if_.otherwise); break;
case C(MAP): S (map); break;
case C(ALTERNATION): S (alternation); break;
case C(UNORDERED): S (unordered); break;
case C(MACRO_CALL): S (macro_call); break;
default:
break;
}
tree = tree->next;
goto again;
#undef s
#undef S
}
/**
* Simplify a tree and generate related warnings and errors in the process
*
* @param result_ `result` from `parse_to_tree`, same sematics, will be updated
* @return -1 if an error occursed that cannot be stored in `result`, zero otherwise
*/
int simplify_tree(mds_kbdc_parsed_t* restrict result_)
{
result = result_;
return simplify(result_->tree);
}
#undef FLATTEN
#undef REMOVE_NOTHING
#undef NEW_ERROR
#undef C
#undef PROCESS_LEVEL
|