/**
* mds — A micro-display server
* Copyright © 2014, 2015, 2016, 2017 Mattias Andrée (maandree@kth.se)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "linked-list.h"
#include "macros.h"
#include <string.h>
#include <errno.h>
/**
* The default initial capacity
*/
#ifndef LINKED_LIST_DEFAULT_INITIAL_CAPACITY
# define LINKED_LIST_DEFAULT_INITIAL_CAPACITY 128
#endif
/**
* Computes the nearest, but higher, power of two,
* but only if the current value is not a power of two
*
* @param value The value to be rounded up to a power of two
* @return The nearest, but not smaller, power of two
*/
static size_t __attribute__((const))
to_power_of_two(size_t value)
{
value -= 1;
value |= value >> 1;
value |= value >> 2;
value |= value >> 4;
value |= value >> 8;
value |= value >> 16;
#if SIZE_MAX == UINT64_MAX
value |= value >> 32;
#endif
return value + 1;
}
/**
* Create a linked list
*
* @param this Memory slot in which to store the new linked list
* @param capacity The minimum initial capacity of the linked list, 0 for default
* @return Non-zero on error, `errno` will have been set accordingly
*/
int
linked_list_create(linked_list_t *restrict this, size_t capacity)
{
/* Use default capacity of zero is specified. */
if (!capacity)
capacity = LINKED_LIST_DEFAULT_INITIAL_CAPACITY;
/* Initialise the linked list. */
this->capacity = capacity = to_power_of_two(capacity);
this->edge = 0;
this->end = 1;
this->reuse_head = 0;
this->reusable = NULL;
this->values = NULL;
this->next = NULL;
this->previous = NULL;
fail_if (xmalloc(this->reusable, capacity, ssize_t));
fail_if (xmalloc(this->values, capacity, size_t));
fail_if (xmalloc(this->next, capacity, ssize_t));
fail_if (xmalloc(this->previous, capacity, ssize_t));
this->values[this->edge] = 0;
this->next[this->edge] = this->edge;
this->previous[this->edge] = this->edge;
return 0;
fail:
return -1;
}
/**
* Release all resources in a linked list, should
* be done even if `linked_list_create` fails
*
* @param this The linked list
*/
void
linked_list_destroy(linked_list_t *restrict this)
{
free(this->reusable), this->reusable = NULL;
free(this->values), this->values = NULL;
free(this->next), this->next = NULL;
free(this->previous), this->previous = NULL;
}
/**
* Clone a linked list
*
* @param this The linked list to clone
* @param out Memory slot in which to store the new linked list
* @return Non-zero on error, `errno` will have been set accordingly
*/
int
linked_list_clone(const linked_list_t *restrict this, linked_list_t *restrict out)
{
fail_if (xmemdup(out->values, this->values, this->capacity, size_t));
fail_if (xmemdup(out->next, this->next, this->capacity, ssize_t));
fail_if (xmemdup(out->previous, this->previous, this->capacity, ssize_t));
fail_if (xmemdup(out->reusable, this->reusable, this->capacity, ssize_t));
out->capacity = this->capacity;
out->end = this->end;
out->reuse_head = this->reuse_head;
out->edge = this->edge;
return 0;
fail:
return -1;
}
/**
* Pack the list so that there are no reusable
* positions, and reduce the capacity to the
* smallest capacity that can be used. Note that
* values (nodes) returned by the list's methods
* will become invalid. Additionally (to reduce
* the complexity) the list will be defragment
* so that the nodes' indices are continuous.
* This method has linear time complexity and
* linear memory complexity.
*
* @param this The list
* @return Non-zero on error, `errno` will have been set accordingly
*/
int
linked_list_pack(linked_list_t *restrict this)
{
ssize_t *restrict new_next = NULL;
ssize_t *restrict new_previous = NULL;
ssize_t *restrict new_reusable = NULL;
size_t size = this->end - this->reuse_head;
size_t cap = to_power_of_two(size);
ssize_t head = 0;
size_t i = 0;
ssize_t node;
size_t *restrict vals;
int saved_errno;
fail_if (xmalloc(vals, cap, size_t));
while ((size_t)head != this->end && this->next[head] == LINKED_LIST_UNUSED)
head++;
if ((size_t)head != this->end) {
for (node = head; (node != head) || (i == 0); i++) {
vals[i] = this->values[node];
node = this->next[node];
}
}
if (cap != this->capacity) {
fail_if (xmalloc(new_next, cap, ssize_t));
fail_if (xmalloc(new_previous, cap, ssize_t));
fail_if (xmalloc(new_reusable, cap, ssize_t));
free(this->next);
free(this->previous);
free(this->reusable);
this->next = new_next;
this->previous = new_previous;
this->reusable = new_reusable;
}
for (i = 0; i < size; i++)
this->next[i] = (ssize_t)(i + 1);
this->next[size - 1] = 0;
for (i = 1; i < size; i++)
this->previous[i] = (ssize_t)(i - 1);
this->previous[0] = (ssize_t)(size - 1);
this->values = vals;
this->end = size;
this->reuse_head = 0;
return 0;
fail:
saved_errno = errno;
free(vals);
free(new_next);
free(new_previous);
return errno = saved_errno, -1;
}
/**
* Gets the next free position, and grow the
* arrays if necessary. This methods has constant
* amortised time complexity.
*
* @param this The list
* @return The next free position,
* `LINKED_LIST_UNUSED` on error, `errno` will be set accordingly
*/
static ssize_t __attribute__((nonnull))
linked_list_get_next(linked_list_t *restrict this)
{
size_t *tmp_values;
ssize_t *tmp;
if (this->reuse_head > 0)
return this->reusable[--(this->reuse_head)];
if (this->end == this->capacity) {
if ((ssize_t)(this->end) < 0)
fail_if ((errno = ENOMEM));
this->capacity <<= 1;
fail_if (yrealloc(tmp_values, this->values, this->capacity, size_t));
fail_if (yrealloc(tmp, this->next, this->capacity, ssize_t));
fail_if (yrealloc(tmp, this->previous, this->capacity, ssize_t));
fail_if (yrealloc(tmp, this->reusable, this->capacity, ssize_t));
}
return (ssize_t)(this->end++);
fail:
return LINKED_LIST_UNUSED;
}
/**
* Mark a position as unused
*
* @param this The list
* @param node The position
* @return The position
*/
static ssize_t __attribute__((nonnull))
linked_list_unuse(linked_list_t *restrict this, ssize_t node)
{
if (node < 0)
return node;
this->reusable[this->reuse_head++] = node;
this->next[node] = LINKED_LIST_UNUSED;
this->previous[node] = LINKED_LIST_UNUSED;
return node;
}
/**
* Insert a value after a specified, reference, node
*
* @param this The list
* @param value The value to insert
* @param predecessor The reference node
* @return The node that has been created and inserted,
* `LINKED_LIST_UNUSED` on error, `errno` will be set accordingly
*/
ssize_t
linked_list_insert_after(linked_list_t *this, size_t value, ssize_t predecessor)
{
ssize_t node = linked_list_get_next(this);
fail_if (node == LINKED_LIST_UNUSED);
this->values[node] = value;
this->next[node] = this->next[predecessor];
this->next[predecessor] = node;
this->previous[node] = predecessor;
this->previous[this->next[node]] = node;
return node;
fail:
return LINKED_LIST_UNUSED;
}
/**
* Remove the node after a specified, reference, node
*
* @param this The list
* @param predecessor The reference node
* @return The node that has been removed
*/
ssize_t
linked_list_remove_after(linked_list_t *restrict this, ssize_t predecessor)
{
ssize_t node = this->next[predecessor];
this->next[predecessor] = this->next[node];
this->previous[this->next[node]] = predecessor;
return linked_list_unuse(this, node);
}
/**
* Insert a value before a specified, reference, node
*
* @param this The list
* @param value The value to insert
* @param successor The reference node
* @return The node that has been created and inserted,
* `LINKED_LIST_UNUSED` on error, `errno` will be set accordingly
*/
ssize_t
linked_list_insert_before(linked_list_t *restrict this, size_t value, ssize_t successor)
{
ssize_t node = linked_list_get_next(this);
fail_if (node == LINKED_LIST_UNUSED);
this->values[node] = value;
this->previous[node] = this->previous[successor];
this->previous[successor] = node;
this->next[node] = successor;
this->next[this->previous[node]] = node;
return node;
fail:
return LINKED_LIST_UNUSED;
}
/**
* Remove the node before a specified, reference, node
*
* @param this The list
* @param successor The reference node
* @return The node that has been removed
*/
ssize_t
linked_list_remove_before(linked_list_t *restrict this, ssize_t successor)
{
ssize_t node = this->previous[successor];
this->previous[successor] = this->previous[node];
this->next[this->previous[node]] = successor;
return linked_list_unuse(this, node);
}
/**
* Remove the node from the list
*
* @param this The list
* @param node The node to remove
*/
void
linked_list_remove(linked_list_t *restrict this, ssize_t node)
{
this->next[this->previous[node]] = this->next[node];
this->previous[this->next[node]] = this->previous[node];
linked_list_unuse(this, node);
}
/**
* Calculate the buffer size need to marshal a linked list
*
* @param this The list
* @return The number of bytes to allocate to the output buffer
*/
size_t
linked_list_marshal_size(const linked_list_t *restrict this)
{
return sizeof(size_t) * (4 + this->reuse_head + 3 * this->end) + sizeof(int);
}
/**
* Marshals a linked list
*
* @param this The list
* @param data Output buffer for the marshalled data
*/
void
linked_list_marshal(const linked_list_t *restrict this, char *restrict data)
{
buf_set(data, int, 0, LINKED_LIST_T_VERSION);
buf_next(data, int, 1);
buf_set(data, size_t, 0, this->capacity);
buf_set(data, size_t, 1, this->end);
buf_set(data, size_t, 2, this->reuse_head);
buf_set(data, ssize_t, 3, this->edge);
buf_next(data, size_t, 4);
memcpy(data, this->reusable, this->reuse_head * sizeof(ssize_t));
buf_next(data, ssize_t, this->reuse_head);
memcpy(data, this->values, this->end * sizeof(size_t));
buf_next(data, size_t, this->end);
memcpy(data, this->next, this->end * sizeof(ssize_t));
buf_next(data, ssize_t, this->end);
memcpy(data, this->previous, this->end * sizeof(ssize_t));
}
/**
* Unmarshals a linked list
*
* @param this Memory slot in which to store the new linked list
* @param data In buffer with the marshalled data
* @return Non-zero on error, `errno` will be set accordingly.
* Destroy the list on error.
*/
int
linked_list_unmarshal(linked_list_t *restrict this, char *restrict data)
{
/* buf_get(data, int, 0, LINKED_LIST_T_VERSION); */
buf_next(data, int, 1);
this->reusable = NULL;
this->values = NULL;
this->next = NULL;
this->previous = NULL;
buf_get(data, size_t, 0, this->capacity);
buf_get(data, size_t, 1, this->end);
buf_get(data, size_t, 2, this->reuse_head);
buf_get(data, ssize_t, 3, this->edge);
buf_next(data, size_t, 4);
fail_if (xmalloc(this->reusable, this->capacity, size_t));
fail_if (xmalloc(this->values, this->capacity, size_t));
fail_if (xmalloc(this->next, this->capacity, size_t));
fail_if (xmalloc(this->previous, this->capacity, size_t));
memcpy(this->reusable, data, this->reuse_head * sizeof(ssize_t));
buf_next(data, ssize_t, this->reuse_head);
memcpy(this->values, data, this->end * sizeof(size_t));
buf_next(data, size_t, this->end);
memcpy(this->next, data, this->end * sizeof(ssize_t));
buf_next(data, ssize_t, this->end);
memcpy(this->previous, data, this->end * sizeof(ssize_t));
return 0;
fail:
return -1;
}
/**
* Print the content of the list
*
* @param this The list
* @param output Output file
*/
void
linked_list_dump(linked_list_t *restrict this, FILE *restrict output)
{
ssize_t i;
size_t j;
fprintf(output, "======= LINKED LIST DUMP =======\n");
fprintf(output, "Capacity: %zu\n", this->capacity);
fprintf(output, "End: %zu\n", this->end);
fprintf(output, "Reuse head: %zu\n", this->reuse_head);
fprintf(output, "Edge: %zi\n", this->edge);
fprintf(output, "--------------------------------\n");
fprintf(output, "Node table (Next, Prev, Value):\n");
i = this->edge;
fprintf(output, " %zi: %zi, %zi, %zu\n", i, this->next[i], this->previous[i], this->values[i]);
foreach_linked_list_node((*this), i)
fprintf(output, " %zi: %zi, %zi, %zu\n", i, this->next[i], this->previous[i], this->values[i]);
i = this->edge;
fprintf(output, " %zi: %zi, %zi, %zu\n", i, this->next[i], this->previous[i], this->values[i]);
fprintf(output, "--------------------------------\n");
fprintf(output, "Raw node table:\n");
for (j = 0; j < this->end; j++)
fprintf(output, " %zu: %zi, %zi, %zu\n", i, this->next[i], this->previous[i], this->values[i]);
fprintf(output, "--------------------------------\n");
fprintf(output, "Reuse stack:\n");
for (j = 0; j < this->reuse_head; j++)
fprintf(output, " %zu: %zi\n", j, this->reusable[j]);
fprintf(output, "================================\n");
}