aboutsummaryrefslogtreecommitdiffstats
path: root/zahl.h
blob: 9a03b2685b37cf59efd4475841e1eb0e24005413 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/* See LICENSE file for copyright and license details. */

/* Warning: libzahl is not thread-safe. */
/* Caution: Do not use libzahl for cryptographic applications, use a specialised library. */

#ifndef ZAHL_H
#define ZAHL_H 1


#include <stddef.h>
#include <setjmp.h>
#include <stdint.h>
#include <limits.h>



#ifndef ZAHL_INLINE
# if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
#  define ZAHL_INLINE  static inline
# else
#  define ZAHL_INLINE  static
# endif
#endif



/* You should pretend like this typedef does not exist. */
typedef uint64_t zahl_char_t;

/* This structure should be considered opaque. */
typedef struct {
        int sign;
#if INT_MAX != LONG_MAX
	int padding__;
#endif
        size_t used;
        size_t alloced;
        zahl_char_t *chars;
} z_t[1];



enum zprimality {
	NONPRIME = 0,                   /* The number is definitely composite. */
	PROBABLY_PRIME,                 /* The number is probably prime. */
	PRIME                           /* The number is definitely prime. */
};

enum zranddev {
	FAST_RANDOM = 0,                /* Random numbers are generated directly from /dev/urandom. */
	SECURE_RANDOM                   /* Random numbers are generated directly from /dev/random. */
};

enum zranddist {
	QUASIUNIFORM = 0,               /* Almost uniformly random, per the usual recommendation. */
	UNIFORM                         /* Actually uniformly random. */
};

enum zerror {
	ZERROR_ERRNO_SET = 0,           /* Please refer to errno. */
	ZERROR_0_POW_0,                 /* Indeterminate form: 0:th power of 0. (Translatable to EDOM.) */
	ZERROR_0_DIV_0,                 /* Indeterminate form: 0 divided by 0. (Translatable to EDOM.) */
	ZERROR_DIV_0,                   /* Undefined result: Division by 0. (Translatable to EDOM.) */
	ZERROR_NEGATIVE                 /* Argument must be non-negative. (Translatable to EDOM or EINVAL.) */
};



/* The parameters in the functions below are numbers a, b, c, ... */


/* Library initialisation and destruction. */

void zsetup(jmp_buf);                   /* Prepare libzahl for use. */
void zunsetup(void);                    /* Free resources used by libzahl */


/* Memory functions. */

ZAHL_INLINE void zinit(z_t);            /* Prepare a for use. */
ZAHL_INLINE void zswap(z_t, z_t);       /* (a, b) := (b, a) */
void zfree(z_t);                        /* Free resources in a. */
size_t zsave(z_t, void *);              /* Store a into b (if !!b), and return number of written bytes. */
size_t zload(z_t, const void *);        /* Restore a from b, and return number of read bytes. */


/* Assignment functions. */

void zset(z_t, z_t);                    /* a := b */
void zsetu(z_t, uint64_t);              /* a := b */
ZAHL_INLINE void zseti(z_t, int64_t);   /* a := b */

/* Comparison functions. */

int zcmp(z_t, z_t);                     /* signum (a - b) */
int zcmpu(z_t, uint64_t);               /* signum (a - b) */
int zcmpi(z_t, int64_t);                /* signum (a - b) */
int zcmpmag(z_t, z_t);                  /* signum (|a| - |b|) */


/* Arithmetic functions. */

ZAHL_INLINE void zabs(z_t, z_t);        /* a := |b| */
ZAHL_INLINE void zneg(z_t, z_t);        /* a := -b */
void zadd(z_t, z_t, z_t);               /* a := b + c */
void zsub(z_t, z_t, z_t);               /* a := b - c */
void zmul(z_t, z_t, z_t);               /* a := b * c */
void zmodmul(z_t, z_t, z_t, z_t);       /* a := (b * c) % d */
void zdiv(z_t, z_t, z_t);               /* a := b / c */
void zdivmod(z_t, z_t, z_t, z_t);       /* a := c / d, b = c % d */
void zmod(z_t, z_t, z_t);               /* a := b % c */
void zsqr(z_t, z_t);                    /* a := b² */
void zmodsqr(z_t, z_t, z_t);            /* a := b² % c */
void zpow(z_t, z_t, z_t);               /* a := b ↑ c */
void zmodpow(z_t, z_t, z_t, z_t);       /* a := (b ↑ c) % d */
void zpowu(z_t, z_t, unsigned long long int);
void zmodpowu(z_t, z_t, unsigned long long int, z_t);

/* These are used internally and may be removed in a future version. */
void zadd_unsigned(z_t, z_t, z_t);      /* a := |b| + |c| */
void zsub_unsigned(z_t, z_t, z_t);      /* a := |b| - |c| */


/* Bitwise operations. */

void zand(z_t, z_t, z_t);               /* a := b & c */
void zor(z_t, z_t, z_t);                /* a := b | c */
void zxor(z_t, z_t, z_t);               /* a := b ^ c */
void znot(z_t, z_t);                    /* a := ~b */
void zlsh(z_t, z_t, size_t);            /* a := b << c */
void zrsh(z_t, z_t, size_t);            /* a := b >> c */
void ztrunc(z_t, z_t, size_t);          /* a := b & ((1 << c) - 1) */
int zbtest(z_t, size_t);                /* (a >> b) & 1 */
void zsplit(z_t, z_t, z_t, size_t);     /* a := c >> d, b := c - (a << d) */
ZAHL_INLINE size_t zlsb(z_t);           /* Index of first set bit, SIZE_MAX if none are set. */
ZAHL_INLINE size_t zbits(z_t);          /* ⌊log₂ |a|⌋ + 1, 1 if a = 0 */

/* If d > 0: a := b | (1 << c), if d = 0: a := b & ~(1 << c), if d < 0: a := b ^ (1 << c) */
void zbset(z_t, z_t, size_t, int);


/* Number theory. */

ZAHL_INLINE int zeven(z_t);             /* Is a even? */
ZAHL_INLINE int zodd(z_t);              /* Is a odd? */
ZAHL_INLINE int zeven_nonzero(z_t);     /* Is a even? Assumes a ≠ 0. */
ZAHL_INLINE int zodd_nonzero(z_t);      /* Is a odd? Assumes a ≠ 0. */
ZAHL_INLINE int zzero(z_t);             /* Is a zero? */
ZAHL_INLINE int zsignum(z_t);           /* a/|a|, 0 if a is zero. */
void zgcd(z_t, z_t, z_t);               /* a := gcd(b, c) */

/* NONPRIME if b ∉ ℙ, PROBABLY_PRIME, if b ∈ ℙ with (1 − 4↑−c) certainty, 2 if PRIME ∈ ℙ.
 * If NONPRIME is returned the witness of b's compositeness is stored in a. */
enum zprimality zptest(z_t, z_t, int);


/* Random number generation. */

/* Pick a randomly from [0, d] ∩ ℤ. */
void zrand(z_t, enum zranddev, enum zranddist, z_t);


/* String conversion. */

char *zstr(z_t, char *);                /* Write a in decimal onto b. */
int zsets(z_t, const char *);           /* a := b */

/* Length of a in radix b. */
size_t zstr_length(z_t, unsigned long long int);


/* Error handling functions. */

enum zerror zerror(const char **);      /* Return the current error code, and unless !a, a description in *a. */
void zperror(const char *);             /* Identical to perror(3p) except it supports libzahl errors. */



/* ------------------------------- Implementations of inline functions. ------------------------------- */


#if defined(__GNUC__) || defined(__clang__)
# define ZAHL_UNLIKELY(expr)  __builtin_expect(!!(expr), 0)
# define ZAHL_LIKELY(expr)    __builtin_expect(!!(expr), 1)
#else
# define ZAHL_UNLIKELY(expr)  (expr)
# define ZAHL_LIKELY(expr)    (expr)
#endif


ZAHL_INLINE void zinit(z_t a)         { a->alloced = 0; a->chars = 0; }
ZAHL_INLINE int zeven(z_t a)          { return !a->sign || !(a->chars[0] & 1); }
ZAHL_INLINE int zodd(z_t a)           { return a->sign && (a->chars[0] & 1); }
ZAHL_INLINE int zeven_nonzero(z_t a)  { return !(a->chars[0] & 1); }
ZAHL_INLINE int zodd_nonzero(z_t a)   { return (a->chars[0] & 1); }
ZAHL_INLINE int zzero(z_t a)          { return !a->sign; }
ZAHL_INLINE int zsignum(z_t a)        { return a->sign; }
ZAHL_INLINE void zabs(z_t a, z_t b)   { if (a != b) zset(a, b); a->sign = !!a->sign; }
ZAHL_INLINE void zneg(z_t a, z_t b)   { if (a != b) zset(a, b); a->sign = -a->sign; }


ZAHL_INLINE void
zswap(z_t a, z_t b)
{
	z_t t;
	t->sign = a->sign;
	a->sign = b->sign;
	b->sign = t->sign;
	t->used = b->used;
	b->used = a->used;
	a->used = t->used;
	t->alloced = a->alloced;
	a->alloced = b->alloced;
	b->alloced = t->alloced;
	t->chars = b->chars;
	b->chars = a->chars;
	a->chars = t->chars;
}


ZAHL_INLINE void
zseti(z_t a, int64_t b)
{
	if (ZAHL_UNLIKELY(b >= 0)) {
		zsetu(a, (uint64_t)b);
	} else {
		zsetu(a, (uint64_t)-b);
		a->sign = -1;
	}
}


ZAHL_INLINE size_t
zlsb(z_t a)
{
#if defined(__GNUC__) || defined(__clang__)
	size_t i = 0;
	if (ZAHL_UNLIKELY(zzero(a)))
		return SIZE_MAX;
	for (; !a->chars[i]; i++);
	i *= 8 * sizeof(zahl_char_t);
	i += (size_t)__builtin_ctzll(a->chars[i]);
	return i;
#else
	size_t i = 0;
	zahl_char_t x;
	if (ZAHL_UNLIKELY(zzero(a)))
		return SIZE_MAX;
	for (; !a->chars[i]; i++);
	i *= 8 * sizeof(zahl_char_t);
	x = ~(a->chars[i]);
	for (; x & 1; x >>= 1, i++);
	return i;
#endif
}


ZAHL_INLINE size_t
zbits(z_t a)
{
#if defined(__GNUC__) || defined(__clang__)
	size_t rc;
	if (ZAHL_UNLIKELY(zzero(a)))
		return 1;
	while (!a->chars[a->used - 1])  a->used--; /* TODO should not be necessary */
	rc = a->used * 8 * sizeof(zahl_char_t);
	rc -= (size_t)__builtin_clzll(a->chars[a->used - 1]);
	return rc;
#else
	size_t rc;
	zahl_char_t x;
	if (ZAHL_UNLIKELY(zzero(a)))
		return 1;
	while (!a->chars[a->used - 1])  a->used--; /* TODO should not be necessary */
	x = a->chars[a->used - 1];
	rc = (a->used - 1) * 8 * sizeof(zahl_char_t);
	for (; x; x >>= 1, rc++);
	return rc;
#endif
}



#endif