aboutsummaryrefslogtreecommitdiffstats
path: root/doc/exercises.tex
blob: 42a7da2c79225f69f294f970143fb6dd441759f1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
\chapter{Exercises}
\label{chap:Exercises}

% TODO
% 
% All exercises should be group with a chapter
% 
% ▶   Recommended
% M   Matematically oriented
% HM  Higher matematical education required
% 
% 00  Immediate
% 10  Simple
% 20  Medium
% 30  Moderately hard
% 40  Term project
% 50  Research project
% 
% ⁺   High risk of undershoot difficulty


\begin{enumerate}[label=\textbf{\arabic*}.]



\item {[$\RHD$\textit{02}]} \textbf{Saturated subtraction}

Implement the function

\vspace{-1em}
\begin{alltt}
   void monus(z_t r, z_t a, z_t b);
\end{alltt}
\vspace{-1em}

\noindent
which calculates $a \dotminus b = \max \{ 0,~ a - b \}$.



\item {[\textit{M10}]} \textbf{Convergence of the Lucas Number ratios}

Find an approximation for
$\displaystyle{ \lim_{n \to \infty} \frac{L_{n + 1}}{L_n}}$,
where $L_n$ is the $n^{\text{th}}$
Lucas Number \psecref{sec:Lucas numbers}.

\( \displaystyle{
    L_n \stackrel{\text{\tiny{def}}}{\text{=}} \left \{ \begin{array}{ll}
      2 & \text{if} ~ n = 0 \\
      1 & \text{if} ~ n = 1 \\
      L_{n - 1} + L_{n + 1} & \text{otherwise}
    \end{array} \right .
}\)



\item {[\textit{M12${}^+$}]} \textbf{Factorisation of factorials}

Implement the function

\vspace{-1em}
\begin{alltt}
   void factor_fact(z_t n);
\end{alltt}
\vspace{-1em}

\noindent
which prints the prime factorisation of $n!$
(the $n^{\text{th}}$ factorial). The function shall
be efficient for all $n$ where all primes $p \le n$
can be found efficiently. You can assume that
$n \ge 2$. You should not evaluate $n!$.



\item {[\textit{M20}]} \textbf{Reverse factorisation of factorials}

{\small\textit{You should already have solved
``Factorisation of factorials'' before you solve
this problem.}}

Implement the function

\vspace{-1em}
\begin{alltt}
   void unfactor_fact(z_t x, z_t *P,
        unsigned long long int *K, size_t n);
\end{alltt}
\vspace{-1em}

\noindent
which given the factorsation of $x!$ determines $x$.
The factorisation of $x!$ is
$\displaystyle{\prod_{i = 1}^{n} P_i^{K_i}}$, where
$P_i$ is \texttt{P[i - 1]} and $K_i$ is \texttt{K[i - 1]}.



\item {[$\RHD$\textit{M17}]} \textbf{Factorials inverted}

Implement the function

\vspace{-1em}
\begin{alltt}
   void unfact(z_t x, z_t n);
\end{alltt}
\vspace{-1em}

\noindent
which given a factorial number $n$, i.e. on the form
$x! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot x$,
calculates $x = n!^{-1}$. You can assume that
$n$ is a perfect factorial number and that $x \ge 1$.
Extra credit if you can detect when the input, $n$,
is not a factorial number. Such function would of
course return an \texttt{int} 1 if the input is a
factorial and 0 otherwise, or alternatively 0
on success and $-1$ with \texttt{errno} set to
\texttt{EDOM} if the input is not a factorial.



\item {[\textit{05}]} \textbf{Fast primality test}

$(x + y)^p \equiv x^p + y^p ~(\text{Mod}~p)$
for all primes $p$ and for a few composites $p$.
Use this to implement a fast primality tester.



\end{enumerate}



\chapter{Solutions}
\label{chap:Solutions}


\begin{enumerate}[label=\textbf{\arabic*}.]

\item \textbf{Saturated subtraction}

\vspace{-1em}
\begin{alltt}
void monus(z_t r, z_t a, z_t b)
\{
    zsub(r, a, b);
    if (zsignum(r) < 0)
        zsetu(r, 0);
\}
\end{alltt}



\item \textbf{Convergence of the Lucas Number ratios}

It would be a mistake to use bignum, and bigint in particular,
to solve this problem. Good old mathematics is a much better solution.

$$ \lim_{n \to \infty} \frac{L_{n + 1}}{L_n} = \lim_{n \to \infty} \frac{L_{n}}{L_{n - 1}} = \lim_{n \to \infty} \frac{L_{n - 1}}{L_{n - 2}} $$

$$ \frac{L_{n}}{L_{n - 1}} = \frac{L_{n - 1}}{L_{n - 2}} $$

$$ \frac{L_{n - 1} + L_{n - 2}}{L_{n - 1}} = \frac{L_{n - 1}}{L_{n - 2}} $$

$$ 1 + \frac{L_{n - 2}}{L_{n - 1}} = \frac{L_{n - 1}}{L_{n - 2}} $$

$$ 1 + \varphi = \frac{1}{\varphi} $$

So the ratio tends toward the golden ratio.



\item \textbf{Factorisation of factorials}

Base your implementation on

\( \displaystyle{
    n! = \prod_{p~\in~\textbf{P}}^{n} p^{k_p}, ~\text{where}~
    k_p = \sum_{a = 1}^{\lfloor \log_p n \rfloor} \lfloor np^{-a} \rfloor.
}\)

There is no need to calculate $\lfloor \log_p n \rfloor$,
you will see when $p^a > n$.



\item \textbf{Reverse factorisation of factorials}

$\displaystyle{x = \max_{p ~\in~ P} ~ p \cdot f(p, k_p)}$,
where $k_p$ is the power of $p$ in the factorisation
of $x!$. $f(p, k)$ is defined as:

\vspace{1em}
\hspace{-2.8ex}
\begin{minipage}{\linewidth}
\begin{algorithmic}
    \STATE $k^\prime \gets 0$
    \WHILE{$k > 0$}
      \STATE $a \gets 0$
      \WHILE{$p^a \le k$}
        \STATE $k \gets k - p^a$
        \STATE $a \gets a + 1$
      \ENDWHILE
      \STATE $k^\prime \gets k^\prime + p^{a - 1}$
    \ENDWHILE
    \RETURN $k^\prime$
\end{algorithmic}
\end{minipage}
\vspace{1em}



\item \textbf{Factorials inverted}

Use \texttt{zlsb} to get the power of 2 in the
prime factorisation of $n$, that is, the number
of times $n$ is divisible by 2. If we write $n$ on
the form $1 \cdot 2 \cdot 3 \cdot \ldots \cdot x$,
every $2^\text{nd}$ factor is divisible by 2, every
$4^\text{th}$ factor is divisible by $2^2$, and so on.
From call \texttt{zlsb} we know how many times,
$n$ is divisible by 2, but know how many of the factors
are divisible by 2, but this can be calculated with
the following algorithm, where $k$ is the number
times $n$ is divisible by 2:

\vspace{1em}
\hspace{-2.8ex}
\begin{minipage}{\linewidth}
\begin{algorithmic}
    \STATE $k^\prime \gets 0$
    \WHILE{$k > 0$}
      \STATE $a \gets 0$
      \WHILE{$2^a \le k$}
        \STATE $k \gets k - 2^a$
        \STATE $a \gets a + 1$
      \ENDWHILE
      \STATE $k^\prime \gets k^\prime + 2^{a - 1}$
    \ENDWHILE
    \RETURN $k^\prime$
\end{algorithmic}
\end{minipage}
\vspace{1em}

\noindent
Note that $2^a$ is efficiently calculated with,
\texttt{zlsh}, but it is more efficient to use
\texttt{zbset}.

Now that we know $k^\prime$, the number of
factors ni $1 \cdot \ldots \cdot x$ that are
divisible by 2, we have two choices for $x$:
$k^\prime$ and $k^\prime + 1$. To check which, we
calculate $(k^\prime - 1)!!$ (the semifactoral, i.e.
$1 \cdot 3 \cdot 5 \cdot \ldots \cdot (k^\prime - 1)$)
naïvely and shift the result $k$ steps to the left.
This gives us $k^\prime!$. If $x! \neq k^\prime!$, then
$x = k^\prime + 1$ unless $n$ is not factorial number.
Of course, if $x! = k^\prime!$, then $x = k^\prime$.



\item \textbf{Fast primality test}

If we select $x = y = 1$ we get
$2^p \equiv 2 ~(\text{Mod}~p)$. This gives us

\vspace{-1em}
\begin{alltt}
enum zprimality ptest_fast(z_t p)
\{
    z_t a;
    int c = zcmpu(p, 2);
    if (c <= 0)
        return c ? NONPRIME : PRIME;
    zinit(a);
    zsetu(a, 1);
    zlsh(a, a, p);
    zmod(a, a, p);
    c = zcmpu(a, 2);
    zfree(a);
    return c ? NONPRIME : PROBABLY_PRIME;
\}
\end{alltt}



\end{enumerate}