diff options
| author | Mattias Andrée <maandree@kth.se> | 2016-10-21 05:25:03 +0200 |
|---|---|---|
| committer | Mattias Andrée <maandree@kth.se> | 2016-10-21 05:25:03 +0200 |
| commit | 183bfa766f29b3eb46b01c7b6e82d71d822b02d5 (patch) | |
| tree | 2bdc373a232ca80f1ce94d4f6b09860557683f83 | |
| parent | Add exercise: [M13] The totient from factorisation (diff) | |
| download | libzahl-183bfa766f29b3eb46b01c7b6e82d71d822b02d5.tar.gz libzahl-183bfa766f29b3eb46b01c7b6e82d71d822b02d5.tar.bz2 libzahl-183bfa766f29b3eb46b01c7b6e82d71d822b02d5.tar.xz | |
manual: fix truncated sentence
Signed-off-by: Mattias Andrée <maandree@kth.se>
| -rw-r--r-- | doc/exercises.tex | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/doc/exercises.tex b/doc/exercises.tex index 0dcab4b..3a9df19 100644 --- a/doc/exercises.tex +++ b/doc/exercises.tex @@ -286,9 +286,9 @@ Implement the function which calculates the totient $t = \varphi(n)$, where $n = \displaystyle{\prod_{i = 1}^n P_i^{K_i}} > 0$, and $P_i = \texttt{P[i - 1]} \in \textbf{P}$, -$K_i = \texttt{K[i - 1]} \ge 1$. All values \texttt{P}. -\texttt{P} and \texttt{K} make up the prime factorisation -of $n$. +$K_i = \texttt{K[i - 1]} \ge 1$. All values \texttt{P} +are mutually unique. \texttt{P} and \texttt{K} make up +the prime factorisation of $n$. You can use the following rules: |
