1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
/**
* libgamma -- Display server abstraction layer for gamma ramp adjustments
* Copyright (C) 2014 Mattias Andrée (maandree@member.fsf.org)
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include "gamma-helper.h"
#include "libgamma-method.h"
#include "libgamma-error.h"
#include <errno.h>
#include <stdlib.h>
#include <stdint.h>
/**
* Just an arbitrary version.
*/
#define ANY bits64
/**
* Concatenation of all ramps.
*/
#define ALL red
/**
* Preform installation in an `for (i = 0; i < n; i++)`
* loop and do a `break` afterwords.
*/
#define __translate(instruction) for (i = 0; i < n; i++) instruction; break
/**
* Convert a [0, 1] `float` to a full range `uint64_t`
* and mark sure rounding errors does not cause the
* value be 0 instead of ~0 and vice versa.
*
* @param value To `float` to convert.
* @return The value as an `uint64_t`.
*/
static inline uint64_t float_to_64(float value)
{
/* XXX Which is faster? */
#if defined(HAVE_INT128) && __WORDSIZE == 64
/* `__int128` is a GNU C extension, which
(because it is not ISO C) emits a warning
under -pedantic. */
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wpedantic"
/* In GCC we can use `__int128`, this is
a signed 128-bit integer. It fits all
uint64_t values but also native values,
which is a nice because it eleminates
some overflow condition tests. It is
also more readable. */
/* Convert to integer. */
__int128 product = (__int128)(value * (float)UINT64_MAX);
/* Negative overflow. */
if (product > UINT64_MAX)
return UINT64_MAX;
/* Positive overflow. */
if (product < 0)
return 0;
/* Did not overflow. */
return (uint64_t)product;
# pragma GCC diagnostic pop
#else
/* If we are not using GCC we cannot be
sure that we have `__int128` so we have
to use `uint64_t` and perform overflow
checkes based on the input value. */
/* Convert to integer. */
uint64_t product = (uint64_t)(value * (float)UINT64_MAX);
/* Negative overflow,
if the input is less than 0,5 but
the output is greater then we got
-1 when we should have gotten 0. */
if ((value < 0.1f) && (product > 0xF000000000000000ULL))
return 0;
/* Positive overflow,
if the input is greater than 0,5
but the output is less then we got
0 when we should have gotten ~0. */
else if ((value > 0.9f) && (product < 0x1000000000000000ULL))
return (uint64_t)~0;
/* Did not overflow. */
return product;
#endif
}
/**
* Convert a [0, 1] `double` to a full range `uint64_t`
* and mark sure rounding errors does not cause the
* value be 0 instead of ~0 and vice versa.
*
* @param value To `double` to convert.
* @return The value as an `uint64_t`.
*/
static inline uint64_t double_to_64(double value)
{
/* XXX Which is faster? */
#if defined(HAVE_INT128) && __WORDSIZE == 64
/* `__int128` is a GNU C extension, which
(because it is not ISO C) emits a warning
under -pedantic. */
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wpedantic"
/* In GCC we can use `__int128`, this is
a signed 128-bit integer. It fits all
uint64_t values but also native values,
which is a nice because it eleminates
some overflow condition tests. It is
also more readable. */
/* Convert to integer. */
__int128 product = (__int128)(value * (double)UINT64_MAX);
/* Negative overflow. */
if (product > UINT64_MAX)
return UINT64_MAX;
/* Positive overflow. */
if (product < 0)
return 0;
/* Did not overflow. */
return (uint64_t)product;
# pragma GCC diagnostic pop
#else
/* If we are not using GCC we cannot be
sure that we have `__int128` so we have
to use `uint64_t` and perform overflow
checkes based on the input value. */
/* Convert to integer. */
uint64_t product = (uint64_t)(value * (double)UINT64_MAX);
/* Negative overflow,
if the input is less than 0,5 but
the output is greater then we got
-1 when we should have gotten 0. */
if ((value < (double)0.1f) && (product > 0xF000000000000000ULL))
product = 0;
/* Positive overflow.
if the input is greater than 0,5
but the output is less then we got
0 when we should have gotten ~0. */
else if ((value > (double)0.9f) && (product < 0x1000000000000000ULL))
product = (uint64_t)~0;
/* Did not overflow. */
return product;
#endif
}
/**
* Convert any set of gamma ramps into a 64-bit integer array with all channels.
*
* @param depth The depth of the gamma ramp, `-1` for `float`, `-2` for `double`.
* @param n The grand size of gamma ramps (sum of all channels' sizes.)
* @param out Output array.
* @param in Input gamma ramps.
*/
static void translate_to_64(signed depth, size_t n, uint64_t* restrict out, libgamma_gamma_ramps_any_t in)
{
size_t i;
switch (depth)
{
/* Translate integer. */
case 8: __translate(out[i] = (uint64_t)(in.bits8. ALL[i]) * 0x0101010101010101ULL);
case 16: __translate(out[i] = (uint64_t)(in.bits16.ALL[i]) * 0x0001000100010001ULL);
case 32: __translate(out[i] = (uint64_t)(in.bits32.ALL[i]) * 0x0000000100000001ULL);
/* Identity translation. */
case 64: __translate(out[i] = in.bits64.ALL[i]);
/* Translate floating point. */
case -1: __translate(out[i] = float_to_64(in.float_single.ALL[i]));
case -2: __translate(out[i] = double_to_64(in.float_double.ALL[i]));
default:
/* This is not possible. */
abort();
break;
}
}
/**
* Undo the actions of `translate_to_64`.
*
* @param depth The depth of the gamma ramp, `-1` for `float`, `-2` for `double`.
* @param n The grand size of gamma ramps (sum of all channels' sizes.)
* @param out Output gamma ramps.
* @param in Input array, may be modified.
*/
static void translate_from_64(signed depth, size_t n, libgamma_gamma_ramps_any_t out, uint64_t* restrict in)
{
size_t i;
switch (depth)
{
/* Translate integer. */
case 8: __translate(out.bits8. ALL[i] = (uint8_t)(in[i] / 0x0101010101010101ULL));
case 16: __translate(out.bits16.ALL[i] = (uint16_t)(in[i] / 0x0001000100010001ULL));
case 32: __translate(out.bits32.ALL[i] = (uint32_t)(in[i] / 0x0000000100000001ULL));
/* Identity translation. */
case 64: __translate(out.bits64.ALL[i] = in[i]);
/* Translate floating point. */
case -1: __translate(out.float_single.ALL[i] = (float)(in[i]) / (float)UINT64_MAX);
case -2: __translate(out.float_double.ALL[i] = (double)(in[i]) / (double)UINT64_MAX);
default:
/* This is not possible. */
abort();
break;
}
}
/**
* Allocate and initalise a gamma ramp with any depth.
*
* @param ramps_sys Output gamma ramps.
* @param ramps The gamma ramps whose sizes should be duplicated.
* @param depth The depth of the gamma ramps to allocate,
* `-1` for `float`, `-2` for `double`.
* @param elements Output reference for the grand size of the gamma ramps.
* @return Zero on success, otherwise (negative) the value of an
* error identifier provided by this library.
*/
static int allocated_any_ramp(libgamma_gamma_ramps_any_t* restrict ramps_sys,
libgamma_gamma_ramps_any_t ramps, signed depth, size_t* restrict elements)
{
/* Calculate the size of the allocation to do. */
size_t d, n = ramps.ANY.red_size + ramps.ANY.green_size + ramps.ANY.blue_size;
switch (depth)
{
case 8: d = sizeof(uint8_t); break;
case 16: d = sizeof(uint16_t); break;
case 32: d = sizeof(uint32_t); break;
case 64: d = sizeof(uint64_t); break;
case -1: d = sizeof(float); break;
case -2: d = sizeof(double); break;
default:
return errno = EINVAL, LIBGAMMA_ERRNO_SET;
}
/* Copy the gamma ramp sizes. */
ramps_sys->ANY = ramps.ANY;
/* Allocate the new ramps. */
#ifdef HAVE_LIBGAMMA_METHOD_LINUX_DRM
/* Valgrind complains about us reading uninitialize memory if we just use malloc. */
ramps_sys->ANY.red = calloc(n, d);
#else
ramps_sys->ANY.red = malloc(n * d);
#endif
ramps_sys->ANY.green = (void*)(((char*)(ramps_sys->ANY. red)) + ramps.ANY. red_size * d / sizeof(char));
ramps_sys->ANY.blue = (void*)(((char*)(ramps_sys->ANY.green)) + ramps.ANY.green_size * d / sizeof(char));
/* Report the total gamma ramp size. */
*elements = n;
/* Report successfulness. */
return ramps_sys->ANY.red == NULL ? LIBGAMMA_ERRNO_SET : 0;
}
/**
* Get the current gamma ramps for a CRTC, re-encoding version.
*
* @param this The CRTC state.
* @param ramps The gamma ramps to fill with the current values.
* @param depth_user The depth of the gamma ramps that are provided by the user,
* `-1` for `float`, `-2` for `double`.
* @param depth_system The depth of the gamma ramps as required by the adjustment method,
* `-1` for `float`, `-2` for `double`.
* @param fun Function that is to be used read the ramps, its parameters have
* the same function as those of this function with the same names,
* and the return value too is identical.
* @return Zero on success, otherwise (negative) the value of an
* error identifier provided by this library.
*/
int libgamma_translated_ramp_get_(libgamma_crtc_state_t* restrict this,
libgamma_gamma_ramps_any_t* restrict ramps,
signed depth_user, signed depth_system,
libgamma_get_ramps_any_fun* fun)
{
size_t n;
int r;
libgamma_gamma_ramps_any_t ramps_sys;
uint64_t* restrict ramps_full;
/* Allocate ramps with proper data type. */
if ((r = allocated_any_ramp(&ramps_sys, *ramps, depth_system, &n)))
return r;
/* Fill the ramps. */
if ((r = fun(this, &ramps_sys)))
return free(ramps_sys.ANY.red), r;
/* Allocate intermediary ramps. */
if ((ramps_full = malloc(n * sizeof(uint64_t))) == NULL)
return free(ramps_sys.ANY.red), LIBGAMMA_ERRNO_SET;
/* Translate ramps to 64-bit integers. */
translate_to_64(depth_system, n, ramps_full, ramps_sys);
free(ramps_sys.ANY.red);
/* Translate ramps to the user's format. */
translate_from_64(depth_user, n, *ramps, ramps_full);
free(ramps_full);
return 0;
}
/**
* Set the gamma ramps for a CRTC, re-encoding version.
*
* @param this The CRTC state.
* @param ramps The gamma ramps to apply.
* @param depth_user The depth of the gamma ramps that are provided by the user,
* `-1` for `float`, `-2` for `double`.
* @param depth_system The depth of the gamma ramps as required by the adjustment method,
* `-1` for `float`, `-2` for `double`.
* @param fun Function that is to be used write the ramps, its parameters have
* the same function as those of this function with the same names,
* and the return value too is identical.
* @return Zero on success, otherwise (negative) the value of an
* error identifier provided by this library.
*/
int libgamma_translated_ramp_set_(libgamma_crtc_state_t* restrict this,
libgamma_gamma_ramps_any_t ramps,
signed depth_user, signed depth_system,
libgamma_set_ramps_any_fun* fun)
{
size_t n;
int r;
libgamma_gamma_ramps_any_t ramps_sys;
uint64_t* restrict ramps_full;
/* Allocate ramps with proper data type. */
if ((r = allocated_any_ramp(&ramps_sys, ramps, depth_system, &n)))
return r;
/* Allocate intermediary ramps. */
if ((ramps_full = malloc(n * sizeof(uint64_t))) == NULL)
return free(ramps_sys.ANY.red), LIBGAMMA_ERRNO_SET;
/* Translate ramps to 64-bit integers. */
translate_to_64(depth_user, n, ramps_full, ramps);
/* Translate ramps to the proper format. */
translate_from_64(depth_system, n, ramps_sys, ramps_full);
free(ramps_full);
/* Apply the ramps */
r = fun(this, ramps_sys);
free(ramps_sys.ANY.red);
return r;
}
#undef __translate
#undef ALL
#undef ANY
|