/* See LICENSE file for copyright and license details. */
#include "common.h"
#ifndef TEST
enum libfonts_subpixel_order
libfonts_calculate_subpixel_order(enum libfonts_subpixel_order unrotated, const struct libfonts_transformation *transformation)
{
#define ASIS 0
#define ROTATED_90_DEG_CLOCKWISE 1
#define ROTATED_180_DEG_CLOCKWISE 2
#define ROTATED_270_DEG_CLOCKWISE 3
#define FLIPPED -1
#define FLOPPED -2
#define TRANSPOSED -3
#define ANTITRANSPOSED -4
#define OTHER -5
double x[4], y[4], xmin, ymin, xmax, ymax, t1, t2;
int trans, i, j;
if (unrotated == LIBFONTS_SUBPIXEL_ORDER_UNKNOWN ||
unrotated == LIBFONTS_SUBPIXEL_ORDER_NONRGB ||
unrotated == LIBFONTS_SUBPIXEL_ORDER_NONLINEAR ||
unrotated == LIBFONTS_SUBPIXEL_ORDER_OTHER)
return unrotated;
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
if (!eq(transformation->m[i][j], 0))
goto known;
return LIBFONTS_SUBPIXEL_ORDER_UNKNOWN;
known:
transform(&x[0], &y[0], 0, 0, transformation);
transform(&x[1], &y[1], 1, 0, transformation);
transform(&x[2], &y[2], 0, 1, transformation);
transform(&x[3], &y[3], 1, 1, transformation);
t1 = x[0] < x[1] ? x[0] : x[1];
t2 = x[2] < x[3] ? x[2] : x[3];
xmin = t1 < t2 ? t1 : t2;
t1 = y[0] < y[1] ? y[0] : y[1];
t2 = y[2] < y[3] ? y[2] : y[3];
ymin = t1 < t2 ? t1 : t2;
for (i = 0; i < 4; i++) {
x[i] -= xmin;
y[i] -= ymin;
}
t1 = x[0] > x[1] ? x[0] : x[1];
t2 = x[2] > x[3] ? x[2] : x[3];
xmax = t1 > t2 ? t1 : t2;
t1 = y[0] > y[1] ? y[0] : y[1];
t2 = y[2] > y[3] ? y[2] : y[3];
ymax = t1 > t2 ? t1 : t2;
for (i = 0; i < 4; i++) {
x[i] /= xmax;
y[i] /= ymax;
}
/* Here we select the inverse transformation from what `transformation`
* applies, as `transformation` applies to the image on the output and
* we want to know how the output is physically configured, which is
* the inverse */
trans = OTHER;
if (eq(x[0], 0) && eq(y[0], 0) && eq(x[3], 1) && eq(y[3], 1)) {
if (eq(x[1], 1) && eq(y[1], 0) && eq(x[2], 0) && eq(y[2], 1))
trans = ASIS;
else if (eq(x[2], 1) && eq(y[2], 0) && eq(x[1], 0) && eq(y[1], 1))
trans = TRANSPOSED;
} else if (eq(x[1], 0) && eq(y[1], 0) && eq(x[2], 1) && eq(y[2], 1)) {
if (eq(x[0], 1) && eq(y[0], 0) && eq(x[3], 0) && eq(y[3], 1))
trans = FLOPPED;
else if (eq(x[3], 1) && eq(y[3], 0) && eq(x[0], 0) && eq(y[0], 1))
trans = ROTATED_90_DEG_CLOCKWISE;
} else if (eq(x[2], 0) && eq(y[2], 0) && eq(x[1], 1) && eq(y[1], 1)) {
if (eq(x[0], 1) && eq(y[0], 0) && eq(x[3], 0) && eq(y[3], 1))
trans = ROTATED_270_DEG_CLOCKWISE;
else if (eq(x[3], 1) && eq(y[3], 0) && eq(x[0], 0) && eq(y[0], 1))
trans = FLIPPED;
} else if (eq(x[3], 0) && eq(y[3], 0) && eq(x[0], 1) && eq(y[0], 1)) {
if (eq(x[1], 1) && eq(y[1], 0) && eq(x[2], 0) && eq(y[2], 1))
trans = ANTITRANSPOSED;
else if (eq(x[2], 1) && eq(y[2], 0) && eq(x[1], 0) && eq(y[1], 1))
trans = ROTATED_180_DEG_CLOCKWISE;
}
switch (trans) {
case OTHER:
return LIBFONTS_SUBPIXEL_ORDER_NONLINEAR;
case ANTITRANSPOSED:
if (unrotated <= LIBFONTS_SUBPIXEL_ORDER_G_R_B)
return unrotated ^ 3;
else
return unrotated ^ 5;
case TRANSPOSED:
if (unrotated <= LIBFONTS_SUBPIXEL_ORDER_G_R_B)
return unrotated ^ 1;
else
return 7 - (unrotated & 7) + (unrotated & (enum libfonts_subpixel_order)~7U);
case FLOPPED:
if (unrotated <= LIBFONTS_SUBPIXEL_ORDER_G_R_B)
return unrotated ^ ((~unrotated << 1) & 2);
else
return unrotated ^ 4 ^ ((unrotated << 1) & 2);
case FLIPPED:
if (unrotated <= LIBFONTS_SUBPIXEL_ORDER_G_R_B)
return unrotated ^ ((unrotated << 1) & 2);
else
return unrotated ^ 4 ^ ((~unrotated << 1) & 2);
case ASIS:
return unrotated;
default:
return (enum libfonts_subpixel_order)((((int)unrotated + trans) & 3) + ((int)unrotated & ~3));
}
}
#else
static void
test(int xtrans, int ytrans, int zscale, int xscale, int yscale)
{
#define T(IN, OUT, MAT)\
T_(LIBFONTS_SUBPIXEL_ORDER_##IN, LIBFONTS_SUBPIXEL_ORDER_##OUT, &MAT)
#define T_(IN, OUT, MAT)\
ASSERT(libfonts_calculate_subpixel_order(IN, MAT) == OUT)
#define ASIS_(IN, OUT) T(IN, OUT, asis_matrix)
#define ROT90CW_(IN, OUT) T(IN, OUT, rot90cw_matrix)
#define ROT180CW_(IN, OUT) T(IN, OUT, rot180cw_matrix)
#define ROT270CW_(IN, OUT) T(IN, OUT, rot270cw_matrix)
#define FLIP_(IN, OUT) T(IN, OUT, flip_matrix)
#define FLOP_(IN, OUT) T(IN, OUT, flop_matrix)
#define TRANSPOSE_(IN, OUT) T(IN, OUT, transpose_matrix)
#define ANTITRANSPOSE_(IN, OUT) T(IN, OUT, antitranspose_matrix)
#define NONLINEAR_(IN, OUT) T(IN, OUT, nonlinear_matrix)
#define UNKNOWN_(IN, OUT) T(IN, OUT, unknown_matrix)
#define ROT(R0, R270, R180, R90)\
do {\
ASIS_(R0, R0);\
ASIS_(R90, R90);\
ASIS_(R180, R180);\
ASIS_(R270, R270);\
ROT90CW_(R0, R90);\
ROT90CW_(R90, R180);\
ROT90CW_(R180, R270);\
ROT90CW_(R270, R0);\
ROT180CW_(R0, R180);\
ROT180CW_(R90, R270);\
ROT180CW_(R180, R0);\
ROT180CW_(R270, R90);\
ROT270CW_(R0, R270);\
ROT270CW_(R90, R0);\
ROT270CW_(R180, R90);\
ROT270CW_(R270, R180);\
} while (0)
#define FLIP(A, B)\
do {\
FLIP_(A, B);\
FLIP_(B, A);\
} while (0)
#define FLOP(A, B)\
do {\
FLOP_(A, B);\
FLOP_(B, A);\
} while (0)
#define TRANSPOSE(A, B)\
do {\
TRANSPOSE_(A, B);\
TRANSPOSE_(B, A);\
} while (0)
#define ANTITRANSPOSE(A, B)\
do {\
ANTITRANSPOSE_(A, B);\
ANTITRANSPOSE_(B, A);\
} while (0)
#define NONLINEAR(IN) NONLINEAR_(IN, NONLINEAR)
#define UNKNOWN(IN) UNKNOWN_(IN, UNKNOWN)
#define ROTX(R0, R270, R180, R90)\
do {\
ROT(R0, R270, R180, R90);\
ROT(BALANCED_##R0, BALANCED_##R270, BALANCED_##R180, BALANCED_##R90);\
} while (0)
#define X(M, A, B)\
do {\
M(A, B);\
M(BALANCED_##A, BALANCED_##B);\
} while (0)
#define NONLINEARX(A)\
do {\
NONLINEAR(A);\
NONLINEAR(BALANCED_##A);\
} while (0)
#define UNKNOWNX(A)\
do {\
UNKNOWN(A);\
UNKNOWN(BALANCED_##A);\
} while (0)
struct libfonts_transformation asis_matrix = {.m = {
{+xscale, 0, xtrans},
{ 0, +yscale, ytrans},
{ 0, 0, zscale}}};
struct libfonts_transformation rot90cw_matrix = {.m = {
{ 0, -yscale, xtrans},
{+xscale, 0, ytrans},
{ 0, 0, zscale}}};
struct libfonts_transformation rot180cw_matrix = {.m = {
{-xscale, 0, xtrans},
{ 0, -yscale, ytrans},
{ 0, 0, zscale}}};
struct libfonts_transformation rot270cw_matrix = {.m = {
{ 0, +yscale, xtrans},
{-xscale, 0, ytrans},
{ 0, 0, zscale}}};
struct libfonts_transformation flip_matrix = {.m = {
{+xscale, 0, xtrans},
{ 0, -yscale, ytrans},
{ 0, 0, zscale}}};
struct libfonts_transformation flop_matrix = {.m = {
{-xscale, 0, xtrans},
{ 0, +yscale, ytrans},
{ 0, 0, zscale}}};
struct libfonts_transformation transpose_matrix = {.m = {
{ 0, +yscale, xtrans},
{+xscale, 0, ytrans},
{ 0, 0, zscale}}};
struct libfonts_transformation antitranspose_matrix = {.m = {
{ 0, -yscale, xtrans},
{-xscale, 0, ytrans},
{ 0, 0, zscale}}};
struct libfonts_transformation nonlinear_matrix = {.m = {
{+xscale, +yscale / (double)2, xtrans},
{ 0, +yscale, ytrans},
{ 0, 0, zscale}}};
struct libfonts_transformation unknown_matrix = {.m = {
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}}};
#define UNSUPPORTED(A)\
do {\
ASIS_(A, A);\
ROT90CW_(A, A);\
ROT180CW_(A, A);\
ROT270CW_(A, A);\
FLIP_(A, A);\
FLOP_(A, A);\
TRANSPOSE_(A, A);\
ANTITRANSPOSE_(A, A);\
NONLINEAR_(A, A);\
UNKNOWN_(A, A);\
} while (0)
UNSUPPORTED(UNKNOWN);
UNSUPPORTED(NONRGB);
UNSUPPORTED(NONLINEAR);
UNSUPPORTED(OTHER);
ROT(RGB, R_G_B, BGR, B_G_R);
ROT(GBR, G_B_R, RBG, R_B_G);
ROT(BRG, B_R_G, GRB, G_R_B);
ROTX(RR_GB, GR_BR, BG_RR, RB_RG);
ROTX(RR_BG, BR_GR, GB_RR, RG_RB);
ROTX(GG_RB, RG_BG, BR_GG, GB_GR);
ROTX(GG_BR, BG_RG, RB_GG, GR_GB);
ROTX(BB_RG, RB_GB, GR_BB, BG_BR);
ROTX(BB_GR, GB_RB, RG_BB, BR_BG);
FLIP(RGB, RGB);
FLIP(R_G_B, B_G_R);
FLIP(BGR, BGR);
FLIP(GBR, GBR);
FLIP(G_B_R, R_B_G);
FLIP(RBG, RBG);
FLIP(BRG, BRG);
FLIP(B_R_G, G_R_B);
FLIP(GRB, GRB);
X(FLIP, RR_GB, GB_RR);
X(FLIP, GR_BR, BR_GR);
X(FLIP, BG_RR, RR_BG);
X(FLIP, RB_RG, RG_RB);
X(FLIP, GG_RB, RB_GG);
X(FLIP, RG_BG, BG_RG);
X(FLIP, BR_GG, GG_BR);
X(FLIP, GB_GR, GR_GB);
X(FLIP, BB_RG, RG_BB);
X(FLIP, RB_GB, GB_RB);
X(FLIP, GR_BB, BB_GR);
X(FLIP, BG_BR, BR_BG);
FLOP(RGB, BGR);
FLOP(R_G_B, R_G_B);
FLOP(B_G_R, B_G_R);
FLOP(GBR, RBG);
FLOP(G_B_R, G_B_R);
FLOP(R_B_G, R_B_G);
FLOP(BRG, GRB);
FLOP(B_R_G, B_R_G);
FLOP(G_R_B, G_R_B);
X(FLOP, RR_GB, RR_BG);
X(FLOP, GR_BR, RG_RB);
X(FLOP, BG_RR, GB_RR);
X(FLOP, RB_RG, BR_GR);
X(FLOP, GG_RB, GG_BR);
X(FLOP, RG_BG, GR_GB);
X(FLOP, BR_GG, RB_GG);
X(FLOP, GB_GR, BG_RG);
X(FLOP, BB_RG, BB_GR);
X(FLOP, RB_GB, BR_BG);
X(FLOP, GR_BB, RG_BB);
X(FLOP, BG_BR, GB_RB);
TRANSPOSE(RGB, R_G_B);
TRANSPOSE(BGR, B_G_R);
TRANSPOSE(GBR, G_B_R);
TRANSPOSE(RBG, R_B_G);
TRANSPOSE(BRG, B_R_G);
TRANSPOSE(GRB, G_R_B);
X(TRANSPOSE, RR_GB, RG_RB);
X(TRANSPOSE, GR_BR, GB_RR);
X(TRANSPOSE, BG_RR, BR_GR);
X(TRANSPOSE, RB_RG, RR_BG);
X(TRANSPOSE, GG_RB, GR_GB);
X(TRANSPOSE, RG_BG, RB_GG);
X(TRANSPOSE, BR_GG, BG_RG);
X(TRANSPOSE, GB_GR, GG_BR);
X(TRANSPOSE, BB_RG, BR_BG);
X(TRANSPOSE, RB_GB, RG_BB);
X(TRANSPOSE, GR_BB, GB_RB);
X(TRANSPOSE, BG_BR, BB_GR);
ANTITRANSPOSE(RGB, B_G_R);
ANTITRANSPOSE(BGR, R_G_B);
ANTITRANSPOSE(GBR, R_B_G);
ANTITRANSPOSE(RBG, G_B_R);
ANTITRANSPOSE(BRG, G_R_B);
ANTITRANSPOSE(GRB, B_R_G);
X(ANTITRANSPOSE, RR_GB, BR_GR);
X(ANTITRANSPOSE, GR_BR, RR_BG);
X(ANTITRANSPOSE, BG_RR, RG_RB);
X(ANTITRANSPOSE, RB_RG, GB_RR);
X(ANTITRANSPOSE, GG_RB, BG_RG);
X(ANTITRANSPOSE, RG_BG, GG_BR);
X(ANTITRANSPOSE, BR_GG, GR_GB);
X(ANTITRANSPOSE, GB_GR, RB_GG);
X(ANTITRANSPOSE, BB_RG, GB_RB);
X(ANTITRANSPOSE, RB_GB, BB_GR);
X(ANTITRANSPOSE, GR_BB, BR_BG);
X(ANTITRANSPOSE, BG_BR, RG_BB);
NONLINEAR(RGB);
NONLINEAR(R_G_B);
NONLINEAR(BGR);
NONLINEAR(B_G_R);
NONLINEAR(GBR);
NONLINEAR(G_B_R);
NONLINEAR(RBG);
NONLINEAR(R_B_G);
NONLINEAR(BRG);
NONLINEAR(B_R_G);
NONLINEAR(GRB);
NONLINEAR(G_R_B);
NONLINEARX(RR_GB);
NONLINEARX(GR_BR);
NONLINEARX(BG_RR);
NONLINEARX(RB_RG);
NONLINEARX(RR_BG);
NONLINEARX(BR_GR);
NONLINEARX(GB_RR);
NONLINEARX(RG_RB);
NONLINEARX(GG_RB);
NONLINEARX(RG_BG);
NONLINEARX(BR_GG);
NONLINEARX(GB_GR);
NONLINEARX(GG_BR);
NONLINEARX(BG_RG);
NONLINEARX(RB_GG);
NONLINEARX(GR_GB);
NONLINEARX(BB_RG);
NONLINEARX(RB_GB);
NONLINEARX(GR_BB);
NONLINEARX(BG_BR);
NONLINEARX(BB_GR);
NONLINEARX(GB_RB);
NONLINEARX(RG_BB);
NONLINEARX(BR_BG);
UNKNOWN(RGB);
UNKNOWN(R_G_B);
UNKNOWN(BGR);
UNKNOWN(B_G_R);
UNKNOWN(GBR);
UNKNOWN(G_B_R);
UNKNOWN(RBG);
UNKNOWN(R_B_G);
UNKNOWN(BRG);
UNKNOWN(B_R_G);
UNKNOWN(GRB);
UNKNOWN(G_R_B);
UNKNOWNX(RR_GB);
UNKNOWNX(GR_BR);
UNKNOWNX(BG_RR);
UNKNOWNX(RB_RG);
UNKNOWNX(RR_BG);
UNKNOWNX(BR_GR);
UNKNOWNX(GB_RR);
UNKNOWNX(RG_RB);
UNKNOWNX(GG_RB);
UNKNOWNX(RG_BG);
UNKNOWNX(BR_GG);
UNKNOWNX(GB_GR);
UNKNOWNX(GG_BR);
UNKNOWNX(BG_RG);
UNKNOWNX(RB_GG);
UNKNOWNX(GR_GB);
UNKNOWNX(BB_RG);
UNKNOWNX(RB_GB);
UNKNOWNX(GR_BB);
UNKNOWNX(BG_BR);
UNKNOWNX(BB_GR);
UNKNOWNX(GB_RB);
UNKNOWNX(RG_BB);
UNKNOWNX(BR_BG);
}
int
main(void)
{
int xtrans, ytrans;
for (xtrans = -1; xtrans <= +1; xtrans++) {
for (ytrans = -1; ytrans <= +1; ytrans++) {
test(xtrans, ytrans, 1, 1, 1);
test(xtrans, ytrans, 1, 2, 1);
test(xtrans, ytrans, 1, 1, 2);
test(xtrans, ytrans, 1, 2, 2);
test(xtrans, ytrans, 2, 1, 1);
test(xtrans, ytrans, 2, 2, 2);
}
}
return 0;
}
#endif