// -*- mode: c, coding: utf-8 -*-
/**
* 𝓞(n³) implementation of the Hungarian algorithm
*
* Copyright (C) 2011 Mattias Andrée
*
* This program is free software. It comes without any warranty, to
* the extent permitted by applicable law. You can redistribute it
* and/or modify it under the terms of the Do What The Fuck You Want
* To Public License, Version 2, as published by Sam Hocevar. See
* http://sam.zoy.org/wtfpl/COPYING for more details.
*/
#include <stdio.h>
#include <stdlib.h>
#define cell long
#define CELL_STR "%li"
#define llong long long
#define byte char
#define boolean long
#define null 0
#define true 1
#define false 0
//new cell[X]
#define new_cells(X) new_longs(X)
//new boolean[X]
#define new_booleans(X) new_longs(X)
//new byte[X]
#define new_bytes(X) malloc(X)
//new llong[X]
#define new_llongs(X) malloc((X) << 3)
//new long[X]
#if !(defined __LP64__ || defined __LLP64__)
#define new_longs(X) malloc((X) << 2) /*32-bit*/
#else
#define new_longs(X) malloc((X) << 3) /*64-bit*/
#endif
//new float[X]
#define new_floats(X) malloc((X) << 2)
//new double[X]
#define new_doubles(X) malloc((X) << 3)
//new ?[][X]
#define new_arrays(X) new_longs(X)
#ifdef DEBUG
#define debug(X) fprintf(stderr, "\e[31m%s\e[m\n", X)
#else
#define debug(X)
#endif
/**
* Cell marking: none
*/
#define UNMARKED 0L
/**
* Cell marking: marked
*/
#define MARKED 1L
/**
* Cell marking: prime
*/
#define PRIME 2L
/**
* Bit set, a set of fixed number of bits/booleans
*/
typedef struct
{
/**
* The set of all limbs, a limb consist of 64 bits
*/
cell* limbs;
/**
* Singleton array with the index of the first non-zero limb
*/
long* first;
/**
* Array the the index of the previous non-zero limb for echo limb
*/
long* prev;
/**
* Array the the index of the next non-zero limb for echo limb
*/
long* next;
} BitSet;
long** kuhn_match(cell** table, long n, long m);
void kuhn_reduceRows(cell** t, long n, long m);
byte** kuhn_mark(cell** t, long n, long m);
boolean kuhn_isDone(byte** marks, boolean* colCovered, long n, long m);
long* kuhn_findPrime(cell** t, byte** marks, boolean* rowCovered, boolean* colCovered, long n, long m);
void kuhn_altMarks(byte** marks, long* altRow, long* altCol, long* colMarks, long* rowPrimes, long* prime, long n, long m);
void kuhn_addAndSubtract(cell** t, boolean* rowCovered, boolean* colCovered, long n, long m);
long** kuhn_assign(byte** marks, long n, long m);
BitSet new_BitSet(long size);
void BitSet_set(BitSet this, long i);
void BitSet_unset(BitSet this, long i);
long BitSet_any(BitSet this);
long lb(llong x);
void print(cell** t, long n, long m, long** assignment);
int main(int argc, char** argv)
{
unsigned a, d;
asm("cpuid");
asm volatile("rdtsc" : "=a" (a), "=d" (d));
srand(((llong)a) | (((llong)d) << 32LL));
long n = 10, m = 15;
long i;
cell** t = new_arrays(n);
cell** table = new_arrays(n);
long j;
if (argc < 2)
for (i = 0; i < n; i++)
{
*(t + i) = new_llongs(m);
*(table + i) = new_llongs(m);
for (j = 0; j < m; j++)
*(*(table + i) + j) = *(*(t + i) + j) = (cell)(random() & 63);
}
else
{
long x;
scanf("%li", &n);
scanf("%li", &m);
t = new_arrays(n);
table = new_arrays(n);
for (i = 0; i < n; i++)
{
*(t + i) = new_llongs(m);
*(table + i) = new_llongs(m);
for (j = 0; j < m; j++)
{
scanf(CELL_STR, &x);
*(*(table + i) + j) = *(*(t + i) + j) = x;
}
}
}
//kuhn_match(table, n, m);
printf("\nInput:\n\n");
print(t, n, m, null);
long** assignment = kuhn_match(table, n, m);
printf("\nOutput:\n\n");
print(t, n, m, assignment);
cell sum = 0;
for (i = 0; i < n; i++)
sum += *(*(t + *(*(assignment + i) + 0)) + *(*(assignment + i) + 1));
printf("\n\nSum: %li\n\n", sum);
return 0;
}
void print(cell** t, long n, long m, long** assignment)
{
long i, j;
long** assigned = new_arrays(n);
for (i = 0; i < n; i++)
{
*(assigned + i) = new_longs(m);
for (j = 0; j < m; j++)
*(*(assigned + i) + j) = 0;
}
if (assignment != null)
for (i = 0; i < n; i++)
(*(*(assigned + **(assignment + i)) + *(*(assignment + i) + 1)))++;
for (i = 0; i < n; i++)
{
printf(" ");
for (j = 0; j < m; j++)
{
if (*(*(assigned + i) + j))
printf("\e[%lim", 30 + *(*(assigned + i) + j));
printf("%5li%s\e[m ", (cell)(*(*(t + i) + j)), (*(*(assigned + i) + j) ? "^" : " "));
}
printf("\n\n");
}
}
/**
* Calculates an optimal bipartite minimum weight matching using an
* O(n³)-time implementation of The Hungarian Algorithm, also known
* as Kuhn's Algorithm. This implemention is restricted to square
* tables.
*
* @param table The table in which to perform the matching
* @param n The dimension of the table
* @return The optimal assignment, an array of row–coloumn pairs
*/
long** kuhn_match(cell** table, long n, long m)
{
long i;
/* not copying table since it will only be used once */
kuhn_reduceRows(table, n, m);
byte** marks = kuhn_mark(table, n, m);
boolean* rowCovered = new_booleans(n);
boolean* colCovered = new_booleans(m);
for (i = 0; i < n; i++)
{
*(rowCovered + i) = false;
*(colCovered + i) = false;
}
for (i = n; i < m; i++)
*(colCovered + i) = false;
long* altRow = new_longs(n * m);
long* altCol = new_longs(n * m);
long* rowPrimes = new_longs(n);
long* colMarks = new_longs(m);
long* prime;
for (;;)
{
if (kuhn_isDone(marks, colCovered, n, m))
break;
for (;;)
{
prime = kuhn_findPrime(table, marks, rowCovered, colCovered, n, m);
if (prime != null)
{
kuhn_altMarks(marks, altRow, altCol, colMarks, rowPrimes, prime, n, m);
for (i = 0; i < n; i++)
{
*(rowCovered + i) = false;
*(colCovered + i) = false;
}
for (i = n; i < m; i++)
*(colCovered + i) = false;
break;
}
kuhn_addAndSubtract(table, rowCovered, colCovered, n, m);
}
}
return kuhn_assign(marks, n, m);
}
/**
* Reduces the values on each rows so that, for each row, the
* lowest cells value is zero, and all cells' values is decrease
* with the same value [the minium value in the row].
*
* @param t The table in which to perform the reduction
* @param n The table's height
* @param m The table's width
*/
void kuhn_reduceRows(cell** t, long n, long m)
{
long i, j;
cell min;
cell* ti;
for (i = 0; i < n; i++)
{
ti = *(t + i);
min = *ti;
for (j = 1; j < m; j++)
if (min > *(ti + j))
min = *(ti + j);
for (j = 0; j < m; j++)
*(ti + j) -= min;
}
}
/**
* Create a matrix with marking of cells in the table whose
* value is zero [minimal for the row]. Each marking will
* be on an unique row and an unique column.
*
* @param t The table in which to perform the reduction
* @param n The table's height
* @param m The table's width
* @return A matrix of markings as described in the summary
*/
byte** kuhn_mark(cell** t, long n, long m)
{
long i, j;
byte** marks = new_arrays(n);
byte* marksi;
for (i = 0; i < n; i++)
{
marksi = *(marks + i) = new_bytes(m);
for (j = 0; j < m; j++)
*(marksi + j) = UNMARKED;
}
boolean* rowCovered = new_booleans(n);
boolean* colCovered = new_booleans(m);
for (i = 0; i < n; i++)
{
*(rowCovered + i) = false;
*(colCovered + i) = false;
}
for (i = 0; i < m; i++)
*(colCovered + i) = false;
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
if ((!*(rowCovered + i)) && (!*(colCovered + j)) && (*(*(t + i) + j) == 0))
{
*(*(marks + i) + j) = MARKED;
*(rowCovered + i) = true;
*(colCovered + j) = true;
}
return marks;
}
/**
* Determines whether the marking is complete, that is
* if each row has a marking which is on a unique column.
*
* @param marks The marking matrix
* @param colCovered An array which tells whether a column is covered
* @param n The table's height
* @param m The table's width
* @return Whether the marking is complete
*/
boolean kuhn_isDone(byte** marks, boolean* colCovered, long n, long m)
{
long i, j;
for (j = 0; j < m; j++)
for (i = 0; i < n; i++)
if (*(*(marks + i) + j) == MARKED)
{
*(colCovered + j) = true;
break;
}
long count = 0;
for (j = 0; j < m; j++)
if (*(colCovered + j))
count++;
return count == n;
}
/**
* Finds a prime
*
* @param t The table
* @param marks The marking matrix
* @param rowCovered Row cover array
* @param colCovered Column cover array
* @param n The table's height
* @param m The table's width
* @return The row and column of the found print, <code>null</code> will be returned if none can be found
*/
long* kuhn_findPrime(cell** t, byte** marks, boolean* rowCovered, boolean* colCovered, long n, long m)
{
long i, j;
BitSet zeroes = new_BitSet(n * n);
for (i = 0; i < n; i++)
if (!*(rowCovered + i))
for (j = 0; j < m; j++)
if ((!*(colCovered + j)) && (*(*(t + i) + j) == 0))
BitSet_set(zeroes, i * m + j);
long p, row, col;
boolean markInRow;
for (;;)
{
p = BitSet_any(zeroes);
if (p < 0)
return null;
row = p / m;
col = p % m;
*(*(marks + row) + col) = PRIME;
markInRow = false;
for (j = 0; j < m; j++)
if (*(*(marks + row) + j) == MARKED)
{
markInRow = true;
col = j;
}
if (markInRow)
{
*(rowCovered + row) = true;
*(colCovered + col) = false;
for (i = 0; i < n; i++)
if ((*(*(t + i) + col) == 0) && (row != i))
{
if ((!*(rowCovered + i)) && (!*(colCovered + col)))
BitSet_set(zeroes, i * m + col);
else
BitSet_unset(zeroes, i * m + col);
}
for (j = 0; j < m; j++)
if ((*(*(t + row) + j) == 0) && (col != j))
{
if ((!*(rowCovered + row)) && (!*(colCovered + j)))
BitSet_set(zeroes, row * m + j);
else
BitSet_unset(zeroes, row * m + j);
}
if ((!*(rowCovered + row)) && (!*(colCovered + col)))
BitSet_set(zeroes, row * m + col);
else
BitSet_unset(zeroes, row * m + col);
}
else
{
long* rc = new_longs(2);
*rc = row;
*(rc + 1) = col;
return rc;
}
}
}
/**
* Removes all prime marks and modifies the marking
*
* @param marks The marking matrix
* @param altRow Marking modification path rows
* @param altCol Marking modification path columns
* @param colMarks Markings in the columns
* @param rowPrimes Primes in the rows
* @param prime The last found prime
* @param n The table's height
* @param m The table's width
*/
void kuhn_altMarks(byte** marks, long* altRow, long* altCol, long* colMarks, long* rowPrimes, long* prime, long n, long m)
{
long index = 0, i, j;
*altRow = *prime;
*altCol = *(prime + 1);
for (i = 0; i < n; i++)
{
*(rowPrimes + i) = -1;
*(colMarks + i) = -1;
}
for (i = n; i < m; i++)
*(colMarks + i) = -1;
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
if (*(*(marks + i) + j) == MARKED)
*(colMarks + j) = i;
else if (*(*(marks + i) + j) == PRIME)
*(rowPrimes + i) = j;
long row, col;
for (;;)
{
row = *(colMarks + *(altCol + index));
if (row < 0)
break;
index++;
*(altRow + index) = row;
*(altCol + index) = *(altCol + index - 1);
col = *(rowPrimes + *(altRow + index));
index++;
*(altRow + index) = *(altRow + index - 1);
*(altCol + index) = col;
}
byte* markx;
for (i = 0; i <= index; i++)
{
markx = *(marks + *(altRow + i)) + *(altCol + i);
if (*markx == MARKED)
*markx = UNMARKED;
else
*markx = MARKED;
}
byte* marksi;
for (i = 0; i < n; i++)
{
marksi = *(marks + i);
for (j = 0; j < m; j++)
if (*(marksi + j) == PRIME)
*(marksi + j) = UNMARKED;
}
}
/**
* Depending on whether the cells' rows and columns are covered,
* the the minimum value in the table is added, subtracted or
* neither from the cells.
*
* @param t The table to manipulate
* @param rowCovered Array that tell whether the rows are covered
* @param colCovered Array that tell whether the columns are covered
* @param n The table's height
* @param m The table's width
*/
void kuhn_addAndSubtract(cell** t, boolean* rowCovered, boolean* colCovered, long n, long m)
{
long i, j;
cell min = 0x7FFFffffL;
for (i = 0; i < n; i++)
if (!*(rowCovered + i))
for (j = 0; j < m; j++)
if ((!*(colCovered + j)) && (min > *(*(t + i) + j)))
min = *(*(t + i) + j);
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
{
if (*(rowCovered + i))
*(*(t + i) + j) += min;
if (*(colCovered + j) == false)
*(*(t + i) + j) -= min;
}
}
/**
* Creates a list of the assignment cells
*
* @param marks Matrix markings
* @param n The table's height
* @param m The table's width
* @return The assignment, an array of row–coloumn pairs
*/
long** kuhn_assign(byte** marks, long n, long m)
{
long** assignment = new_arrays(n);
long i, j;
for (i = 0; i < n; i++)
{
*(assignment + i) = new_longs(2);
for (j = 0; j < m; j++)
if (*(*(marks + i) + j) == MARKED)
{
**(assignment + i) = i;
*(*(assignment + i) + 1) = j;
}
}
return assignment;
}
/**
* Constructor for BitSet
*
* @param size The (fixed) number of bits to bit set should contain
* @return The a unique BitSet instance with the specified size
*/
BitSet new_BitSet(long size)
{
BitSet this;
long c = size >> 6L;
if (size & 63L)
c++;
this.limbs = new_llongs(c);
this.prev = new_longs(c + 1L);
this.next = new_longs(c + 1L);
*(this.first = new_longs(1)) = 0;
long i;
for (i = 0; i < c; i++)
{
*(this.limbs + i) = 0LL;
*(this.prev + i) = *(this.next + i) = 0L;
}
*(this.prev + c) = *(this.next + c) = 0L;
return this;
}
/**
* Turns on a bit in a bit set
*
* @param this The bit set
* @param i The index of the bit to turn on
*/
void BitSet_set(BitSet this, long i)
{
long j = i >> 6L;
llong old = *(this.limbs + j);
*(this.limbs + j) |= 1LL << (llong)(i & 63L);
if ((!*(this.limbs + j)) ^ (!old))
{
j++;
*(this.prev + *(this.first)) = j;
*(this.prev + j) = 0;
*(this.next + j) = *(this.first);
*(this.first) = j;
}
}
/**
* Turns off a bit in a bit set
*
* @param this The bit set
* @param i The index of the bit to turn off
*/
void BitSet_unset(BitSet this, long i)
{
long j = i >> 6L;
llong old = *(this.limbs + j);
*(this.limbs + j) &= ~(1LL << (llong)(i & 63L));
if ((!*(this.limbs + j)) ^ (!old))
{
j++;
long p = *(this.prev + j);
long n = *(this.next + j);
*(this.prev + n) = p;
*(this.next + p) = n;
if (*(this.first) == j)
*(this.first) = *(this.next + j);
}
}
/**
* Gets the index of any set bit in a bit set
*
* @param this The bit set
* @return The index of any set bit
*/
long BitSet_any(BitSet this)
{
if (*(this.first) == 0L)
return -1;
long i = *(this.first) - 1L;
return lb(*(this.limbs + i) & -*(this.limbs + i)) + (i << 6L);
}
/**
* Calculates the floored binary logarithm of a positive integer
*
* @param value The integer whose logarithm to calculate
* @return The floored binary logarithm of the integer
*/
long lb(llong value)
{
long rc = 0L;
llong v = value;
if (v & 0xFFFFFFFF00000000LL) { rc |= 32L; v >>= 32LL; }
if (v & 0x00000000FFFF0000LL) { rc |= 16L; v >>= 16LL; }
if (v & 0x000000000000FF00LL) { rc |= 8L; v >>= 8LL; }
if (v & 0x00000000000000F0LL) { rc |= 4L; v >>= 4LL; }
if (v & 0x000000000000000CLL) { rc |= 2L; v >>= 2LL; }
if (v & 0x0000000000000002LL) rc |= 1L;
return rc;
}