/* See LICENSE file for copyright and license details. */
#include "cg-base.h"
#include <libclut.h>
#if defined(_GNU_SOURCE)
# undef _GNU_SOURCE
#endif
#include <errno.h>
#include <sched.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
/**
* The default filter priority for the program
*/
const int64_t default_priority = (int64_t)3 << 59;
/**
* The default class for the program
*/
char default_class[] = PKGNAME "::cg-sleepmode::standard";
/**
* Class suffixes
*/
const char *const *class_suffixes = (const char *const[]){NULL};
/**
* -r: fade-out time for the red channel
*/
static char *rflag;
/**
* -g: fade-out time for the green channel
*/
static char *gflag;
/**
* -b: fade-out time for the blue channel
*/
static char *bflag;
/**
* The duration, in seconds, of the red channel's fade out
*/
static double red_time = 3;
/**
* The duration, in seconds, of the green channel's fade out
*/
static double green_time = 2;
/**
* The duration, in seconds, of the blue channel's fade out
*/
static double blue_time = 1;
/**
* The luminosity of red channel after the fade out
*/
static double red_target = 0.5;
/**
* The luminosity of green channel after the fade out
*/
static double green_target = 0;
/**
* The luminosity of blue channel after the fade out
*/
static double blue_target = 0;
/**
* Time to fade in?
*/
static volatile sig_atomic_t received_int = 0;
/**
* Print usage information and exit
*/
void
usage(void)
{
fprintf(stderr,
"usage: %s [-M method] [-S site] [-c crtc]... [-R rule] [-p priority] "
"[-r red-fadeout-time] [-g green-fadeout-time] [-b blue-fadeout-time] "
"[red-luminosity [green-luminosity [blue-luminosity]]]\n",
argv0);
exit(1);
}
/**
* Called when a signal is received
* that tells the program to terminate
*
* @param signo The received signal
*/
static void
sig_int(int signo)
{
received_int = 1;
(void) signo;
}
/**
* Handle a command line option
*
* @param opt The option, it is a NUL-terminate two-character
* string starting with either '-' or '+', if the
* argument is not recognised, call `usage`. This
* string will not be "-M", "-S", "-c", "-p", or "-R".
* @param arg The argument associated with `opt`,
* `NULL` there is no next argument, if this
* parameter is `NULL` but needed, call `usage`
* @return 0 if `arg` was not used,
* 1 if `arg` was used,
* -1 on error
*/
int
handle_opt(char *opt, char *arg)
{
if (opt[0] == '-') {
switch (opt[1]) {
case 'r':
if (rflag || !(rflag = arg))
usage();
return 1;
case 'g':
if (gflag || !(gflag = arg))
usage();
return 1;
case 'b':
if (bflag || !(bflag = arg))
usage();
return 1;
default:
usage();
}
} else {
usage();
}
return 0;
}
/**
* Parse a non-negative double encoded as a string
*
* @param out Output parameter for the value
* @param str The string
* @return Zero on success, -1 if the string is invalid
*/
static int
parse_double(double *restrict out, const char *restrict str)
{
char *end;
errno = 0;
*out = strtod(str, &end);
if (errno || *out < 0 || isinf(*out) || isnan(*out) || *end)
return -1;
if (!*str || !strchr("0123456789.", *str))
return -1;
return 0;
}
/**
* This function is called after the last
* call to `handle_opt`
*
* @param argc The number of unparsed arguments
* @param argv `NULL` terminated list of unparsed arguments
* @param prio The argument associated with the "-p" option
* @return Zero on success, -1 on error
*/
int
handle_args(int argc, char *argv[], char *prio)
{
int q = (rflag || gflag || bflag || argc);
if (q > 1 || argc > 3)
usage();
if (rflag && parse_double(&red_time, rflag) < 0)
usage();
if (gflag && parse_double(&green_time, gflag) < 0)
usage();
if (bflag && parse_double(&blue_time, bflag) < 0)
usage();
if (argc >= 1 && parse_double(&red_target, argv[0]) < 0)
usage();
if (argc >= 2 && parse_double(&green_target, argv[1]) < 0)
usage();
if (argc >= 3 && parse_double(&blue_target, argv[2]) < 0)
usage();
if (red_target >= 1)
red_time = 0;
if (green_target >= 1)
green_time = 0;
if (blue_target >= 1)
blue_time = 0;
return 0;
(void) prio;
}
/**
* Fill a filter
*
* @param filter The filter to fill
* @param red The red brightness
* @param green The green brightness
* @param blue The blue brightness
*/
static void
fill_filter(libcoopgamma_filter_t *restrict filter, double red, double green, double blue)
{
switch (filter->depth) {
#define X(CONST, MEMBER, MAX, TYPE)\
case CONST:\
libclut_start_over(&filter->ramps.MEMBER, MAX, TYPE, 1, 1, 1);\
libclut_rgb_brightness(&filter->ramps.MEMBER, MAX, TYPE, red, green, blue);\
break;
LIST_DEPTHS
#undef X
default:
abort();
}
}
/**
* Get the current monotonic time as a double
*
* @param now Output parameter for the current time (monotonic)
* @return Zero on success, -1 on error
*/
static int
double_time(double *restrict now)
{
#ifndef CLOCK_MONOTONIC_RAW
# define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC
#endif
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts) < 0)
return -1;
*now = (double)(ts.tv_nsec);
*now /= 1000000000L;
*now += (double)(ts.tv_sec);
return 0;
}
/**
* The main function for the program-specific code
*
* @return 0: Success
* -1: Error, `errno` set
* -2: Error, `cg.error` set
* -3: Error, message already printed
*/
int
start(void)
{
int r, fade_red, fade_green, fade_blue;
size_t i, j;
double t, starttime, red, green, blue, redt, greent, bluet;
redt = (red_target - 1) / red_time;
greent = (green_target - 1) / green_time;
bluet = (blue_target - 1) / blue_time;
fade_red = !isinf(redt) && !isnan(redt);
fade_green = !isinf(greent) && !isnan(greent);
fade_blue = !isinf(bluet) && !isnan(bluet);
for (i = 0; i < filters_n; i++)
crtc_updates[i].filter.lifespan = LIBCOOPGAMMA_UNTIL_DEATH;
if ((r = make_slaves()) < 0)
return r;
if ((r = double_time(&starttime)) < 0)
return r;
red = red_target < 0 ? 0 : red_target > 1 ? 1 : red_target;
green = green_target < 0 ? 0 : green_target > 1 ? 1 : green_target;
blue = blue_target < 0 ? 0 : blue_target > 1 ? 1 : blue_target;
for (;;) {
if ((r = double_time(&t)) < 0)
return r;
t -= starttime;
if (fade_red) {
red = 1 + t * redt;
if (red > 1)
red = 1;
else if (red < 0)
red = 0;
}
if (fade_green) {
green = 1 + t * greent;
if (green > 1)
green = 1;
else if (green < 0)
green = 0;
}
if (fade_blue) {
blue = 1 + t * bluet;
if (blue > 1)
blue = 1;
else if (blue < 0)
blue = 0;
}
for (i = 0, r = 1; i < filters_n; i++) {
if (!crtc_updates[i].master || !crtc_info[crtc_updates[i].crtc].supported)
continue;
fill_filter(&crtc_updates[i].filter, red, green, blue);
r = update_filter(i, 0);
if (r == -2 || (r == -1 && errno != EAGAIN))
return r;
if (crtc_updates[i].slaves)
for (j = 0; crtc_updates[i].slaves[j]; j++) {
r = update_filter(crtc_updates[i].slaves[j], 0);
if (r == -2 || (r == -1 && errno != EAGAIN))
return r;
}
}
while (r != 1)
if ((r = synchronise(-1)) < 0)
return r;
sched_yield();
if (t >= red_time && t >= green_time && t >= blue_time)
break;
}
if (signal(SIGINT, sig_int) == SIG_ERR ||
signal(SIGTERM, sig_int) == SIG_ERR ||
signal(SIGHUP, sig_int) == SIG_ERR)
return -1;
if (libcoopgamma_set_nonblocking(&cg, 0) < 0)
return -1;
for (;;) {
if (libcoopgamma_synchronise(&cg, NULL, 0, &j) < 0) {
if (received_int)
goto fade_in;
switch (errno) {
case 0:
break;
case ENOTRECOVERABLE:
goto enotrecoverable;
default:
return 1;
}
}
}
fade_in:
if (libcoopgamma_set_nonblocking(&cg, 1) < 0)
return -1;
t = red_time;
t = t > green_time ? t : green_time;
t = t > blue_time ? t : blue_time;
redt = t - red_time;
greent = t - green_time;
bluet = t - blue_time;
t = red_time + green_time + blue_time;
if (red_time > 0)
t = t < red_time ? t : red_time;
if (green_time > 0)
t = t < green_time ? t : green_time;
if (blue_time > 0)
t = t < blue_time ? t : blue_time;
red_time = t + redt;
green_time = t + greent;
blue_time = t + bluet;
red = green = blue = 1;
if ((r = double_time(&starttime)) < 0)
return r;
for (;;) {
if ((r = double_time(&t)) < 0)
return r;
t -= starttime;
redt = t / red_time;
greent = t / green_time;
bluet = t / blue_time;
if (!isinf(redt) && !isnan(redt)) {
red = red_target * (1 - redt) + redt;
if (red > 1)
red = 1;
else if (red < 0)
red = 0;
}
if (!isinf(greent) && !isnan(greent)) {
green = green_target * (1 - greent) + greent;
if (green > 1)
green = 1;
else if (green < 0)
green = 0;
}
if (!isinf(bluet) && !isnan(bluet)) {
blue = blue_target * (1 - bluet) + bluet;
if (blue > 1)
blue = 1;
else if (blue < 0)
blue = 0;
}
for (i = 0, r = 1; i < filters_n; i++) {
if (!crtc_updates[i].master || !crtc_info[crtc_updates[i].crtc].supported)
continue;
fill_filter(&crtc_updates[i].filter, red, green, blue);
r = update_filter(i, 0);
if (r == -2 || (r == -1 && errno != EAGAIN))
return r;
if (crtc_updates[i].slaves) {
for (j = 0; crtc_updates[i].slaves[j]; j++) {
r = update_filter(crtc_updates[i].slaves[j], 0);
if (r == -2 || (r == -1 && errno != EAGAIN))
return r;
}
}
}
while (r != 1 && (r = synchronise(-1)) < 0)
return r;
sched_yield();
if (t >= red_time && t >= green_time && t >= blue_time)
break;
}
return 0;
enotrecoverable:
pause();
return -1;
}