1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
#!/usr/bin/env python3
# -*- python -*-
# Copyright © 2014, 2015, 2016, 2017 Mattias Andrée (maandree@kth.se)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Test of cubic interpolation.
# Load matplotlib.pyplot,
# it can take some time so
# print information about it.
print('Loading matplotlib.pyplot...')
import matplotlib.pyplot as plot
print('Done loading matplotlib.pyplot')
# Modules used for input data generation
from math import *
from random import *
def main():
# Create a page with graphs
fig = plot.figure()
# Add graphs
add_graph(fig, 221, [i / 15 for i in range(16)])
add_graph(fig, 222, [sin(6 * i / 15) for i in range(16)])
add_graph(fig, 223, [(i / 15) ** 0.5 for i in range(16)])
#add_graph(fig, 224, [random() for i in range(16)])
add_graph(fig, 224, [(-1) ** (i // 2) for i in range(16)])
#add_graph(fig, 224, [i / 15 * (-1) ** (i // 2) for i in range(16)])
# Show graphs
plot.show()
def add_graph(fig, graph_pos, input_values):
'''
Add a graph
@param fig:Figure The page to which to add the graph
@param graph_pos:int Where to place the graph
@param input_values:list<float> The input values for each point
'''
# Interpolate data
output_values = interpolate(input_values)
# Number of input points
n = len(input_values)
# Number of output points
m = len(output_values)
# Create graph
graph = fig.add_subplot(graph_pos)
# Plot interpolated data
graph.plot([i / (m - 1) for i in range(m)], output_values, 'b-')
# Plot input data
graph.plot([i / (n - 1) for i in range(n)], input_values, 'ro')
def interpolate(small, tension = 0):
'''
Interpolate data
@param small:list<float> The input values for each point
@param tension:float A [0, 1] value of the interpolation tension
@return :list<float> The values for each point in a scaled up version
'''
large = [None] * len(small) ** 2
small_, large_ = len(small) - 1, len(large) - 1
# Basis functions
#h00 = lambda t : (1 + 2 * t) * (1 - t) ** 2
h10 = lambda t : t * (1 - t) ** 2
h01 = lambda t : t ** 2 * (3 - 2 * t)
h11 = lambda t : t ** 2 * (t - 1)
def tangent(values, index, last):
'''
Calculate the tangent at a point
@param values:list<float> Mapping from points to values
@param index:int The point
@param last:int The last point
@return :float The tangent at the point `index`
'''
if last == 0: return 0
if index == 0: return values[1] - values[0]
if index == last: return values[last] - values[last - 1]
return (values[index + 1] - values[index - 1]) / 2
# Tension coefficent
c_ = 1 - tension
for i in range(len(large)):
# Scaling
j = i * small_ / large_
# Floor, weight, ceiling
j, w, k = int(j), j % 1, min(int(j) + 1, small_)
# Points
pj, pk = small[j], small[k]
# Tangents
mj, mk = c_ * tangent(small, j, small_), c_ * tangent(small, k, small_)
# Interpolation
large[i] = pj + h10(w) * mj + h01(w) * (pk - pj) + h11(w) * mk
return large
# Plot interpolation
main()
|