summaryrefslogtreecommitdiffstats
path: root/test/cubic_interpolation
blob: aede7a8a4981f69d78f6fa5abe0c7db3da619592 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env python3
# -*- python -*-

# Copyright © 2014, 2015, 2016, 2017  Mattias Andrée (m@maandree.se)
# 
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.


# Test of cubic interpolation.


# Load matplotlib.pyplot,
# it can take some time so
# print information about it.
print('Loading matplotlib.pyplot...')
import matplotlib.pyplot as plot
print('Done loading matplotlib.pyplot')

# Modules used for input data generation
from math import *
from random import *


def main():
    # Create a page with graphs
    fig = plot.figure()
    
    # Add graphs
    add_graph(fig, 221, [i / 15 for i in range(16)])
    add_graph(fig, 222, [sin(6 * i / 15) for i in range(16)])
    add_graph(fig, 223, [(i / 15) ** 0.5 for i in range(16)])
    #add_graph(fig, 224, [random() for i in range(16)])
    add_graph(fig, 224, [(-1) ** (i // 2) for i in range(16)])
    #add_graph(fig, 224, [i / 15 * (-1) ** (i // 2) for i in range(16)])
    
    # Show graphs
    plot.show()

def add_graph(fig, graph_pos, input_values):
    '''
    Add a graph
    
    @param  fig:Figure                The page to which to add the graph
    @param  graph_pos:int             Where to place the graph
    @param  input_values:list<float>  The input values for each point
    '''
    # Interpolate data
    output_values = interpolate(input_values)
    # Number of input points
    n = len(input_values)
    # Number of output points
    m = len(output_values)
    # Create graph
    graph = fig.add_subplot(graph_pos)
    # Plot interpolated data
    graph.plot([i / (m - 1) for i in range(m)], output_values, 'b-')
    # Plot input data
    graph.plot([i / (n - 1) for i in range(n)], input_values, 'ro')


def interpolate(small, tension = 0):
    '''
    Interpolate data
    
    @param   small:list<float>  The input values for each point
    @param   tension:float      A [0, 1] value of the interpolation tension
    @return  :list<float>       The values for each point in a scaled up version
    '''
    large = [None] * len(small) ** 2
    small_, large_ = len(small) - 1, len(large) - 1
    # Basis functions
    #h00 = lambda t : (1 + 2 * t) * (1 - t) ** 2
    h10 = lambda t : t * (1 - t) ** 2
    h01 = lambda t : t ** 2 * (3 - 2 * t)
    h11 = lambda t : t ** 2 * (t - 1)
    def tangent(values, index, last):
        '''
        Calculate the tangent at a point
        
        @param   values:list<float>  Mapping from points to values
        @param   index:int           The point
        @param   last:int            The last point
        @return  :float              The tangent at the point `index`
        '''
        if last == 0:      return 0
        if index == 0:     return values[1] - values[0]
        if index == last:  return values[last] - values[last - 1]
        return (values[index + 1] - values[index - 1]) / 2
    # Tension coefficent
    c_ = 1 - tension
    for i in range(len(large)):
        # Scaling
        j = i * small_ / large_
        # Floor, weight, ceiling
        j, w, k = int(j), j % 1, min(int(j) + 1, small_)
        # Points
        pj, pk = small[j], small[k]
        # Tangents
        mj, mk = c_ * tangent(small, j, small_), c_ * tangent(small, k, small_)
        # Interpolation
        large[i] = pj + h10(w) * mj + h01(w) * (pk - pj) + h11(w) * mk
    return large

# Plot interpolation
main()