1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
|
#!/usr/bin/env python3
# Copyright © 2014, 2015, 2016, 2017 Mattias Andrée (m@maandree.se)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# This module is responsible for access to the monitors.
import math
from colour import *
from blackbody import *
class Tristate:
'''
Ternary values
@constant NO:int
@constant MAYBE:int
@constant YES:int
'''
NO = 0
MAYBE = 1
YES = 2
class Lifespan:
'''
The lifespan of a gamma adjustment, for cooperative gamma
@constant UNTIL_DEATH:int Remove adjustment when connection to server closes or
when explicitly removed
@constant UNTIL_REMOVAL:int Only remove adjustment once it is requested explicitly
@constant REMOVE:int Request that the adjustment be removed now
'''
UNTIL_DEATH = 0
'''
:int Remove adjustment when connection to server closes or when explicitly removed
'''
UNTIL_REMOVAL = 1
'''
:int Only remove adjustment once it is requested explicitly
'''
REMOVE = 2
'''
:int Request that the adjustment be removed now
'''
class EDID:
'''
Parsed EDID data
@variable manufacturer_id:str? The manufacturer's ID
@variable manufacturer_product_code:int? Manufacturer specific product code
@variable serial_number:int? Serial number
@variable manufacture_week:int? Week of manifacture
@variable manufacture_year:int? Year of manifacture
@variable model_year:int? Year of model
@variable edid_version:(major:int, minor:int)? EDID version
@variable digital_input:bool? Whether the monitor takes digital input
@variable vesa_dfp_1x_tmds_crgb_compatible:bool? Whether the monitor is VESA DFP 1.x TMDS CRGB, 1 pixel
per clock, up to 8 bits per color, MSB aligned compatible
@variable relative_white_level:float? Voltage level for white relative to blank
@variable relative_sync_level:float? Voltage level for separate relative to blank
@variable blank_to_black:bool? Whether blank to black setup is expected
@variable separate_sync_supported:bool? Whether separate synchronisation is supported
@variable composite_sync_supported:bool? Whether composite synchronisation is supported
@variable sync_on_green_supported:bool? Whether synchronisation on green is supported
@variable vsync_pulse_serrated:bool? Whether vertical synchronisation pulse is serrated
@variable width_mm:int? The width of the monitor's viewport in millimetres
@variable height_mm:int? The heiht of the monitor's viewport in millimetres
@variable display_gamma:float? The monitor's gamma
@variable dpms_standby_supported:bool? Whether DPMS standby is supported
@variable dpms_suspend_supported:bool? Whether DPMS suspend is supported
@variable dpms_active_off_supported:bool? Whether DPMS active-off is supported
@variable digital_rgb_444_supported:bool? Whether digital RGB 4:4:4 input is supported
@variable digital_ycrcb_444_supported:bool? Whether digital YCrCb 4:4:4 input is supported
@variable digital_ycrcb_422_supported:bool? Whether digital YCrCb 4:2:2 input is supported
@variable analogue_grey_mono_display:bool? Whether the display is greyscale or monochrome and
takes analogue input
@variable analogue_rgb_display:bool? Whether the display is coloured and uses an RGB
colour space and takes analogue input
@variable analogue_non_rgb_display:bool? Whether the display is coloured and uses a non-RGB
colour model and takes analogue input
@variable srgb:bool? Whether the monitor uses sRGB
@variable preferred_timing_mode:bool? For EDID 1.2-: Whether the preferred timing mode is
specified in descriptor block 1.
For EDID 1.3+: Whether the preferred timing mode
(specified in descriptor block 1) includes native
pixel format and refresh rate.
@variable gtf_supported:bool? Whether Generalized Timing Formula is supported with
default parameter values
@variable red_chroma:(x:float, y:float)? The CIE xyY x and y values of the red primary colour
@variable green_chroma:(x:float, y:float)? The CIE xyY x and y values of the green primary colour
@variable blue_chroma:(x:float, y:float)? The CIE xyY x and y values of the blue primary colour
@variable white_chroma:(x:float, y:float)? The CIE xyY x and y values of the white point
'''
def __init__(self, edid):
'''
Constructor
@param edid:str The EDID in upper case hexadecimal representation
'''
self.manufacturer_id = None
self.manufacturer_product_code = None
self.serial_number = None
self.manufacture_week = None
self.manufacture_year = None
self.model_year = None
self.edid_version = None
self.digital_input = None
self.vesa_dfp_1x_tmds_crgb_compatible = None
self.relative_white_level = None
self.relative_sync_level = None
self.blank_to_black = None
self.separate_sync_supported = None
self.composite_sync_supported = None
self.sync_on_green_supported = None
self.vsync_pulse_serrated = None
self.width_mm = None
self.height_mm = None
self.display_gamma = None
self.dpms_standby_supported = None
self.dpms_suspend_supported = None
self.dpms_active_off_supported = None
self.digital_rgb_444_supported = None
self.digital_ycrcb_444_supported = None
self.digital_ycrcb_422_supported = None
self.analogue_grey_mono_display = None
self.analogue_rgb_display = None
self.analogue_non_rgb_display = None
self.srgb = None
self.preferred_timing_mode = None
self.gtf_supported = None
self.red_chroma = None
self.green_chroma = None
self.blue_chroma = None
self.white_chroma = None
## FOR LEGACY {
self.__gamma_correction = ...
## }
if edid[:len('00FFFFFFFFFFFF00')] == '00FFFFFFFFFFFF00' or len(edid) % 2 == 1:
return
edid = [int(edid[i * 2 : i * 2 + 2], 16) for i in range(len(edid) // 2)]
if len(edid) < 128 or sum(edid[:128]) % 256 != 0:
return
self.manufacturer_id = [(edid[8] >> 2) & 0x0F, (edid[9] >> 4) | (edid[8] & 1) << 4, edid[9] & 0x0F]
self.manufacturer_id = ''.join(chr(ord('@') + c) for c in self.manufacturer_id)
self.manufacturer_product_code = edid[10] | (edid[11] << 8)
self.serial_number = edid[12] | (edid[13] << 8) | (edid[14] << 16) | (edid[15] << 24)
self.manufacture_week = edid[16] # inconsistent between manufacturers
self.manufacture_year = 1990 + edid[17]
if self.manufacture_week == 255:
self.model_year = self.manufacture_year
self.manufacture_week = None
self.manufacture_year = None
self.edid_version = (edid[18], edid[19])
self.digital_input = (edid[20] & 0x80) == 0x80
if self.digital_input:
self.vesa_dfp_1x_tmds_crgb_compatible = (edid[20] & 1) == 1
else:
self.relative_white_level = (0.7, 0.714, 1, 0.7)[(edid >> 5) & 3]
self.relative_sync_level = (-0.3, -0.286, -0.4, 0)[(edid >> 5) & 3]
self.blank_to_black = (edid[20] & 16) == 16
self.separate_sync_supported = (edid[20] & 8) == 8
self.composite_sync_supported = (edid[20] & 4) == 4
self.sync_on_green_supported = (edid[20] & 2) == 2
self.vsync_pulse_serrated = (edid[20] & 1) == 1
self.width_mm = edid[21] * 10
self.height_mm = edid[22] * 10
if edid[21] == 0 or edid[22] == 0:
self.width_mm = self.height_mm = None
self.display_gamma = None if edid[23] == 255 else edid[23] / 100 + 1
self.dpms_standby_supported = (edid[24] & 128) == 128
self.dpms_suspend_supported = (edid[24] & 64) == 64
self.dpms_active_off_supported = (edid[24] & 32) == 32
if self.digital_input:
self.digital_rgb_444_supported = True
self.digital_ycrcb_444_supported = (edid[24] & 8) == 8
self.digital_ycrcb_422_supported = (edid[24] & 16) == 16
self.analogue_grey_mono_display = False
self.analogue_rgb_display = False
self.analogue_non_rgb_display = False
else:
self.digital_rgb_444_supported = False
self.digital_ycrcb_444_supported = False
self.digital_ycrcb_422_supported = False
self.analogue_grey_mono_display = ((edid[24] >> 3) & 3) == 0
self.analogue_rgb_display = ((edid[24] >> 3) & 3) == 1
self.analogue_non_rgb_display = ((edid[24] >> 3) & 3) == 2
self.srgb = (edid[24] & 4) == 4
self.preferred_timing_mode = (edid[24] & 2) == 2
self.gtf_supported = (edid[24] & 1) == 1
rx = (edid[27] << 2) | ((edid[25] >> 6) & 3)
ry = (edid[28] << 2) | ((edid[25] >> 4) & 3)
gx = (edid[29] << 2) | ((edid[25] >> 2) & 3)
gy = (edid[30] << 2) | ((edid[25] >> 0) & 3)
bx = (edid[31] << 2) | ((edid[26] >> 6) & 3)
by = (edid[32] << 2) | ((edid[26] >> 4) & 3)
wx = (edid[33] << 2) | ((edid[26] >> 2) & 3)
wy = (edid[34] << 2) | ((edid[26] >> 0) & 3)
self.red_chroma = (rx / 1024, ry / 1024)
self.green_chroma = (gx / 1024, gy / 1024)
self.blue_chroma = (bx / 1024, by / 1024)
self.white_chroma = (wx / 1024, wy / 1024)
# There are also mode lines and maybe extensions, but yeah...
## FOR LEGACY {
@property
def widthmm(self):
if not EDID.warned_widthmm:
EDID.warned_widthmm = True
print('EDID.widthmm is deprecated, use EDID.width_mm instead', file = sys.stderr)
return self.width_mm
@widthmm.setter
def widthmm(self, value):
if not EDID.warned_widthmm:
EDID.warned_widthmm = True
print('EDID.widthmm is deprecated, use EDID.width_mm instead', file = sys.stderr)
self.width_mm = value
@property
def heightmm(self):
if not EDID.warned_heightmm:
EDID.warned_heightmm = True
print('EDID.heightmm is deprecated, use EDID.height_mm instead', file = sys.stderr)
return self.height_mm
@heightmm.setter
def heightmm(self, value):
if not EDID.warned_heightmm:
EDID.warned_heightmm = True
print('EDID.heightmm is deprecated, use EDID.height_mm instead', file = sys.stderr)
self.height_mm = value
@property
def gamma(self):
if not EDID.warned_gamma:
EDID.warned_gamma = True
print('EDID.gamma is deprecated, use EDID.display_gamma instead', file = sys.stderr)
return self.display_gamma
@gamma.setter
def gamma(self, value):
if not EDID.warned_gamma:
EDID.warned_gamma = True
print('EDID.gamma is deprecated, use EDID.display_gamma instead', file = sys.stderr)
self.display_gamma = value
@property
def gamma_correction(self):
if not EDID.warned_gamma_correction:
EDID.warned_gamma_correction = True
print('EDID.gamma_correction is deprecated', file = sys.stderr)
if self.__gamma_correction is ...:
if self.display_gamma is None:
self.__gamma_correction = None
else:
self.__gamma_correction = self.display_gamma / 2.2
return self.__gamma_correction
@gamma_correction.setter
def gamma_correction(self, value):
if not EDID.warned_gamma_correction:
EDID.warned_gamma_correction = True
print('EDID.gamma_correction is deprecated', file = sys.stderr)
self.__gamma_correction = value
EDID.warned_widthmm = False
EDID.warned_heightmm = False
EDID.warned_gamma = False
EDID.warned_gamma_correction = False
## }
class MultiCRTC:
'''
A group of CRTC:s organised for efficient gamma ramp adjustments
'''
def __init__(self, crtcs, interpolation = None):
'''
Constructor
@param crtc:iter<CTRC> The CRTC:s
@param interpolation:(r:list<float>, g:list<float>, b:list<float>)→
(r:list<float>, g:list<float>, b:list<float>)?
Function used to interpolate gamma ramps to new dimentions,
`None` for the default interpolator, which is intentionally
unspecified
'''
self.interpolation = interpolation
self.layers = []
for crtc in crtcs:
self.add(crtc)
def add(self, crtc):
'''
Add a CRTC
@param crtc:CRTC The CRTC to add
'''
found = None
for layer in self.layers:
ref = layer[0][0][0]
if crtc.red_gamma_size == ref.red_gamma_size:
if crtc.green_gamma_size == ref.green_gamma_size:
if crtc.blue_gamma_size == ref.blue_gamma_size:
found = layer
break
if not found:
found = []
self.layers.append(found)
subfound = None
for sublayer in found:
ref = sublayer[0][0]
if crtc.gamma_depth == ref.gamma_depth:
subfound = sublayer
break
if not subfound:
subfound = []
found.append(subfound)
subsubfound = None
for subsublayer in subfound:
ref = subsublayer[0]
if crtc.backend == ref.backend:
subsubfound = subsublayer
break
if not subsubfound:
subsubfound = []
subfound.append(subsubfound)
subsubfound.append(crtc)
def make_ramps(self, depth = -2):
'''
Create a gamma-ramp trio where each ramp is as large as the
largest ramp, of the samp colour, of the CRTCs in the group
@param depth:int The gamma depth, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values, and
-2 for double-precision floating-point values
@return :Ramps A new gamma-ramp trio suited for the group
'''
size = [1, 1, 1]
for layer in self.layers:
crtc = layer[0][0][0]
size[0] = max(size[0], crtc.red_gamma_size)
size[1] = max(size[1], crtc.green_gamma_size)
size[2] = max(size[2], crtc.blue_gamma_size)
return Ramps(None, depth = depth, size = size)
def set_gamma(self, ramps, priority = None, rule = None, lifespan = 1):
'''
Set the gamma ramps on all CRTC:s in the group
@param ramps:Ramps The gamma ramps
@param priority:int? The priority of the adjustment, `None` for the default.
Must be `None` (default) if cooperative gamma is not supported.
@param rule:str? The rule of the adjustment, `None` for the default.
The rule is the last part of the adjustment's identifier,
if this is unique within the program, it should be universally
unique unless another program is intentionally make it not so.
Must be `None` (default) if cooperative gamma is not supported.
@param lifespan:int The lifespan of the algorithm: `Lifespan.UNTIL_DEATH`,
`Lifespan.UNTIL_REMOVAL` (default), or `Lifespan.REMOVE`
'''
if lifespan == Lifespan.REMOVE:
for layer in self.layers:
for sublayer in layer:
for subsublayer in sublayer:
for crtc in subsublayer:
crtc.set_gamma(None, priority, rule, lifespan)
return
for layer in self.layers:
ref = layer[0][0][0]
refsize = (ref.red_gamma_size, ref.green_gamma_size, ref.blue_gamma_size)
if refsize == (len(ramps.red), len(ramps.green), len(ramps.blue)):
ramps_size = ramps
else:
ramps_size = Ramps.copy(ramps, refcrtc.depth, refsize)
for sublayer in layer:
ref = sublayer[0][0]
refdepth = ref.gamma_depth
if refdepth == ramps_size.depth:
ramps_depth = ramps_size
else:
ramps_depth = Ramps.copy(ramps, refdepth, refsize)
for subsublayer in sublayer:
ramps_backend = ramps_depth
for crtc in subsublayer:
ramps_backend = crtc.set_gamma(ramps_backend, priority, rule, lifespan)
class CRTC:
'''
A CRTC
@function restore:(self)?→void Restore the CLUT:s to the (configured) system
defaults, `None` if not supported
@variable screen:Screen The screen
@variable edid:str? The EDID in upper case hexadecimal representation
@variable red_gamma_size:int? The number of stops in the red gamma ramp
@variable green_gamma_size:int? The number of stops in the green gamma ramp
@variable blue_gamma_size:int? The number of stops in the blue gamma ramp
@variable gamma_depth:int? The gamma depth, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values, and
-2 for double-precision floating-point values
@variable gamma_support:int? 0 (`Tristate.NO`) if gamma adjustments are not supported,
1 (`Tristate.MAYBE`) if gamma adjustments support is unknown,
and 2 (`Tristate.YES`) if gamma adjustments are supported,
@variable subpixel_order:str? The subpixel order:
"RGB" for red at left, green in centre, and blue at right;
"BGR" for red at right, green in centre, and blue at left;
"vRGB" for red at top, green in middle, and blue at bottom;
"vBGR" for red at bottom, green in middle, and blue at top;
and "None" for no subpixel order (e.g. on most old to
semi-old CRT:s)
@variable active:bool? Whether the monitor is active
@variable connector_name:str? The connector name
@variable connector_type:str? The connector type
@variable ramps Gamma ramps, you should not use it directly (INTERNAL)
@variable cooperative:bool Whether cooperative gamma is supported
@variable default_rule:str The default cooperative gamma rule (part of the class (filter identifier))
@variable default_priority:int The default cooperative gamma priority (filter order)
You will also find the following variables in `.edid_data`, however, here they are as
specified by the display server rather than as specified in the EDID. This means that
they can be been corrected by the user or the display server. On the other hand, they
can also be incorrect. For exampel, under X.org `.width_mm` and `.height_mm` are
calculated from assumed properties and can be completely, and horribly, wrong.
@variable manufacturer_id:str? The manufacturer's ID
@variable manufacturer_product_code:int? Manufacturer specific product code
@variable serial_number:int? Serial number
@variable manufacture_week:int? Week of manifacture
@variable manufacture_year:int? Year of manifacture
@variable model_year:int? Year of model
@variable edid_version:(major:int, minor:int)? EDID version
@variable digital_input:bool? Whether the monitor takes digital input
@variable vesa_dfp_1x_tmds_crgb_compatible:bool? Whether the monitor is VESA DFP 1.x TMDS CRGB, 1 pixel
per clock, up to 8 bits per color, MSB aligned compatible
@variable relative_white_level:float? Voltage level for white relative to blank
@variable relative_sync_level:float? Voltage level for separate relative to blank
@variable blank_to_black:bool? Whether blank to black setup is expected
@variable separate_sync_supported:bool? Whether separate synchronisation is supported
@variable composite_sync_supported:bool? Whether composite synchronisation is supported
@variable sync_on_green_supported:bool? Whether synchronisation on green is supported
@variable vsync_pulse_serrated:bool? Whether vertical synchronisation pulse is serrated
@variable width_mm:int? The width of the monitor's viewport in millimetres
@variable height_mm:int? The heiht of the monitor's viewport in millimetres
@variable display_gamma:float? The monitor's gamma
@variable dpms_standby_supported:bool? Whether DPMS standby is supported
@variable dpms_suspend_supported:bool? Whether DPMS suspend is supported
@variable dpms_active_off_supported:bool? Whether DPMS active-off is supported
@variable digital_rgb_444_supported:bool? Whether digital RGB 4:4:4 input is supported
@variable digital_ycrcb_444_supported:bool? Whether digital YCrCb 4:4:4 input is supported
@variable digital_ycrcb_422_supported:bool? Whether digital YCrCb 4:2:2 input is supported
@variable analogue_grey_mono_display:bool? Whether the display is greyscale or monochrome and
takes analogue input
@variable analogue_rgb_display:bool? Whether the display is coloured and uses an RGB
colour space and takes analogue input
@variable analogue_non_rgb_display:bool? Whether the display is coloured and uses a non-RGB
colour model and takes analogue input
@variable srgb:bool? Whether the monitor uses sRGB
@variable preferred_timing_mode:bool? For EDID 1.2-: Whether the preferred timing mode is
specified in descriptor block 1.
For EDID 1.3+: Whether the preferred timing mode
(specified in descriptor block 1) includes native
pixel format and refresh rate.
@variable gtf_supported:bool? Whether Generalized Timing Formula is supported with
default parameter values
@variable red_chroma:(x:float, y:float)? The CIE xyY x and y values of the red primary colour
@variable green_chroma:(x:float, y:float)? The CIE xyY x and y values of the green primary colour
@variable blue_chroma:(x:float, y:float)? The CIE xyY x and y values of the blue primary colour
@variable white_chroma:(x:float, y:float)? The CIE xyY x and y values of the white point
'''
def __init__(self):
'''
Constructor
'''
self.__edid_data = ...
self.edid = None
self.red_gamma_size = None
self.green_gamma_size = None
self.blue_gamma_size = None
self.gamma_depth = None
self.gamma_support = None
self.subpixel_order = None
self.active = None
self.connector_name = None
self.connector_type = None
self.ramps = None
self.cooperative = False
self.default_rule = 'standard'
self.default_priority = 1 << 59
# Everything that is in the EDID class, in
# case it is specified by the display server
# and potentially configured by the user.
self.manufacturer_id = None
self.manufacturer_product_code = None
self.serial_number = None
self.manufacture_week = None
self.manufacture_year = None
self.model_year = None
self.edid_version = None
self.digital_input = None
self.vesa_dfp_1x_tmds_crgb_compatible = None
self.relative_white_level = None
self.relative_sync_level = None
self.blank_to_black = None
self.separate_sync_supported = None
self.composite_sync_supported = None
self.sync_on_green_supported = None
self.vsync_pulse_serrated = None
self.width_mm = None
self.height_mm = None
self.display_gamma = None
self.dpms_standby_supported = None
self.dpms_suspend_supported = None
self.dpms_active_off_supported = None
self.digital_rgb_444_supported = None
self.digital_ycrcb_444_supported = None
self.digital_ycrcb_422_supported = None
self.analogue_grey_mono_display = None
self.analogue_rgb_display = None
self.analogue_non_rgb_display = None
self.srgb = None
self.preferred_timing_mode = None
self.gtf_supported = None
self.red_chroma = None
self.green_chroma = None
self.blue_chroma = None
self.white_chroma = None
def make_ramps(self, depth = None):
'''
Create gamma ramps with the same size as the CRTC expects
@param depth:int? The gamma depth, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values,
-2 for double-precision floating-point values, and
`None` for the gamma depth the CRTC expects
@return :Ramps The created gamma ramps
'''
return Ramps(self, depth = depth)
@property
def edid_data(self):
'''
Get parsed EDID information for the CRTC
@return :EDID Parsed EDID information
'''
if self.__edid_data is ...:
self.__edid_data = None if self.edid is None else EDID(self.edid)
return self.__edid_data
class Screen:
'''
A screen or graphics card
@function restore:(self)?→void Restore the CLUT:s to the (configured) system defaults,
`None` if not supported
@variable display:Display The display
@variable crtcs:list<LibgammaCRTC> The CRTC:s in the screen
'''
def __len__(self):
'''
Get the number of CRTC:s in the screen
@return :int The number of CRTC:s in the screen
'''
return len(self.crtcs)
def __getitem__(self, indices):
'''
Get CRTC:s in the screen
@param indices:int|slice The index or index range of CRTC:s to return
@return :CRTC|list<CRTC> The CRTC or CRTC:s with the specified indices
'''
return self.crtcs[indices]
def __iter__(self):
'''
Iterator of the screen's CRTC:s
@yield :CRTC CRTC in the screen
'''
for value in self[:]:
yield value
class Display:
'''
A display
@function restore:(self)?→void Restore the CLUT:s to the (configured) system defaults,
`None` if not supported
@variable screens:list<LibgammaScreen> The screens in the display
@variable crtcs:list<LibgammaCRTC> The CRTC:s in the display
@variable cooperative:bool Whether the adjustment method supports cooperative gamma
'''
def __len__(self):
'''
Get the number of screens in the display
@return :int The number of screens in the display
'''
return len(self.crtcs)
def __getitem__(self, indices):
'''
Get screens in the display
@param indices:int|slice The index or index range of screens to return
@return :CRTC|list<CRTC> The screen or screens with the specified indices
'''
return self.crtcs[indices]
def __iter__(self):
'''
Iterator of the display's screens
@yield :Screen Screen in the display
'''
for value in self[:]:
yield value
class Ramps:
'''
Gamma ramps
@variable red:list<float> The gamma ramp of the red channel
@variable green:list<float> The gamma ramp of the green channel
@variable blue:list<float> The gamma ramp of the blue channel
@variable depth:int The gamma depth, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values, and
-2 for double-precision floating-point values
@variable maximum:float The largest stop value
'''
def __init__(self, crtc, depth = None, size = None):
'''
Constructor
@param crtc:CRTC? The CRTC the ramps should match, may
only be `None` if neither `depth` nor
`size` is `None`
@param depth:int? The gamma depth, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values,
-2 for double-precision floating-point values, and
`None` for the gamma depth the CRTC expects
@param size:int|(red:int, green:int, blue:int)?
The size of the ramps, either an integer of the size that
is applied to all three channels, three integers with
the size of each channel, or `None` for the sizes the
CRTC expects
'''
if depth is None:
depth = crtc.depth
if size is not None and isinstance(size, int):
size = (size, size, size)
self.depth = depth
self.maximum = 1 if depth < 0 else (1 << depth) - 1
if depth > 0:
def make_ramp(depth, size):
return [int(x * self.maximum / (size - 1) + 0.5) for x in range(size)]
else:
def make_ramp(depth, size):
return [x / (size - 1) for x in range(size)]
self.red = make_ramp(self.depth, crtc.red_gamma_size if size is None else size[0])
self.green = make_ramp(self.depth, crtc.green_gamma_size if size is None else size[1])
self.blue = make_ramp(self.depth, crtc.blue_gamma_size if size is None else size[2])
def copy(self, depth = None, size = None, interpolation = None):
'''
Create a copy, optionally with a new depth or size
@param depth:int? The gamma depth in the copy, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values,
-2 for double-precision floating-point values, and
`None` for the gamma depth of the original (`self`)
@param size:int|(red:int, green:int, blue:int)?
The size of the copy, either an integer of the size that
is applied to all three channels, three integers with
the size of each channel, or `None` for the sizes of
the original
@param interpolation:(red:list<float>, green:list<float>, blue:list<float>)?→
(red:list<float>, green:list<float>, blue:list<float>)
Function used for interpolation used for resizing the
ramps. `None` for the default, which is intentionally
unspecified.
@return :Ramps The copy
'''
if size is None:
size = (len(self.red), len(self.green), len(self.blue))
r = Ramps(None, self.depth if depth is None else depth, size)
ramps = (self.red, self.green, self.blue)
if len(self.red) == len(r.red) and len(self.green) == len(r.green) and len(self.blue) == len(r.blue):
pass
elif interpolation is None:
import interpolation as interpol
ramps = interpol.linearly_interpolate_ramp(*ramps, size = size)
else:
ramps = interpolation(*ramps, size = size)
r.red[:] = ramps[0]
r.green[:] = ramps[1]
r.blue[:] = ramps[2]
if r.maximum != self.maximum:
for ramp in (r.red, r.green, r.blue):
for i in range(len(ramp)):
ramp[i] = ramp[i] * r.maximum / self.maximum
return r
def __str__(self, compact = False):
'''
Create a string of the ramps that is useful for debugging
@param compact:bool Whether to apply run-length compression when suitable
@return :str A printable string
'''
if not compact:
return '%s\n%s\n%s' % (repr(red), repr(green), repr(blue))
rgb = ([], [], [])
for r, w in zip((self.red, self.green, self.blue), rgb):
last, count = None, 0
for value in r:
if self.depth > 0:
value = int(value + 0.5)
if value == last:
count += 1
else:
if last is not None:
if count > 1:
w.append(repr(last))
else:
w.append('%s {%i}' % (repr(last), count))
last = value
count = 1
if last is not None:
if count > 1:
w.append(repr(last))
else:
w.append('%s {%i}' % (repr(last), count))
return '[%s]\n[%s]\n[%s]' % (', '.join(rgb[0]), ', '.join(rgb[1]), ', '.join(rgb[2]))
def __bool(self, r, g, b):
if g is ...: g = r
if b is ...: b = g
ret = []
if r: ret.append(self.red)
if g: ret.append(self.green)
if b: ret.append(self.blue)
return ret
def __datum(self, r, g, b):
if g is ...: g = r
if b is ...: b = g
ret = []
if r is not None: ret.append((self.red, r))
if g is not None: ret.append((self.green, g))
if b is not None: ret.append((self.blue, b))
return ret
def temperature(self, temperature, algorithm):
'''
Change colour temperature according to the CIE illuminant series D using CIE sRBG
@param temperature:float|str The blackbody temperature in kelvins, or a name
@param algorithm:(float)→(float, float, float) Algorithm for calculating a white point, for example `cmf_10deg`
'''
self.rgb_temperature(temperature, algorithm)
def rgb_temperature(self, temperature, algorithm):
'''
Change colour temperature according to the CIE illuminant series D using CIE sRBG
@param temperature:float|str The blackbody temperature in kelvins, or a name
@param algorithm:(float)→(float, float, float) Algorithm for calculating a white point, for example `cmf_10deg`
'''
# Resolve colour temperature name
temperature = kelvins(temperature)
# Do nothing if the temperature is neutral
if temperature == 6500: return
# Otherwise manipulate the colour curves
self.rgb_brightness(*(algorithm(temperature)))
def cie_temperature(self, temperature, algorithm):
'''
Change colour temperature according to the CIE illuminant series D using CIE xyY
@param temperature:float|str The blackbody temperature in kelvins, or a name
@param algorithm:(float)→(float, float, float) Algorithm for calculating a white point, for example `cmf_10deg`
'''
# Resolve colour temperature name
temperature = kelvins(temperature)
# Do nothing if the temperature is neutral
if temperature == 6500: return
# Otherwise manipulate the colour curves
self.cie_brightness(*(algorithm(temperature)))
def rgb_contrast(self, r, g = ..., b = ...):
'''
Apply contrast correction on the colour curves using sRGB
In this context, contrast is a measure of difference between the whitepoint and blackpoint,
if the difference is 0 than they are both grey
@param r:float? The contrast parameter for the red curve
@param g:float|...? The contrast parameter for the green curve, defaults to `r` if `...`
@param b:float|...? The contrast parameter for the blue curve, defaults to `g` if `...`
'''
half = self.maximum / 2
for (curve, level) in self.__value(r, g, b):
if not level == 1.0:
curve[:] = [(y - half) * level + half for y in curve]
def cie_contrast(self, r, g = ..., b = ...):
'''
Apply contrast correction on the colour curves using CIE xyY
In this context, contrast is a measure of difference between the whitepoint and blackpoint,
if the difference is 0 than they are both grey
@param r:float? The contrast parameter for the red curve
@param g:float|...? The contrast parameter for the green curve, defaults to `r` if `...`
@param b:float|...? The contrast parameter for the blue curve, defaults to `g` if `...`
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Check if we can reduce the overhead, we can if the adjustments are identical
same = r == g == b
# Check we need to do any adjustment
if (not same) or (not r == 1.0):
if same:
if r is None:
return
# Manipulate all curves in one step if their adjustments are identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate illumination and convert back to sRGB
(r_, g_, b_) = ciexyy_to_srgb(x, y, (Y - 0.5) * r + 0.5)
if r: self.red[i] = r_ * self.maximum
if g: self.green[i] = g_ * self.maximum
if b: self.blue[i] = b_ * self.maximum
else:
# Manipulate all curves individually if their adjustments are not identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate illumination and convert back to sRGB
if r: self.red[i] = ciexyy_to_srgb(x, y, (Y - 0.5) * r + 0.5)[0] * self.maximum
if g: self.green[i] = ciexyy_to_srgb(x, y, (Y - 0.5) * g + 0.5)[1] * self.maximum
if b: self.blue[i] = ciexyy_to_srgb(x, y, (Y - 0.5) * b + 0.5)[2] * self.maximum
def rgb_brightness(self, r, g = ..., b = ...):
'''
Apply brightness correction on the colour curves using sRGB
In this context, brightness is a measure of the whiteness of the whitepoint
@param r:float? The brightness parameter for the red curve
@param g:float|...? The brightness parameter for the green curve, defaults to `r` if `...`
@param b:float|...? The brightness parameter for the blue curve, defaults to `g` if `...`
'''
for (curve, level) in curves(r, g, b):
if not level == 1.0:
curve[:] = [y * level for y in curve]
def cie_brightness(self, r, g = ..., b = ...):
'''
Apply brightness correction on the colour curves using CIE xyY
In this context, brightness is a measure of the whiteness of the whitepoint
@param r:float? The brightness parameter for the red curve
@param g:float|...? The brightness parameter for the green curve, defaults to `r` if `...`
@param b:float|...? The brightness parameter for the blue curve, defaults to `g` if `...`
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Check if we can reduce the overhead, we can if the adjustments are identical
same = r == g == b
# Check we need to do any adjustment
if (not same) or (not r == 1.0):
if same:
if r is None:
return
# Manipulate all curves in one step if their adjustments are identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
(r_, g_, b_) = ciexyy_to_srgb(x, y, Y * r)
if r: self.red[i] = r_ * self.maximum
if g: self.green[i] = g_ * self.maximum
if b: self.blue[i] = b_ * self.maximum
else:
# Manipulate all curves individually if their adjustments are not identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate illumination and convert back to sRGB
if r: self.red[i] = ciexyy_to_srgb(x, y, Y * r)[0] * self.maximum
if g: self.green[i] = ciexyy_to_srgb(x, y, Y * g)[1] * self.maximum
if b: self.blue[i] = ciexyy_to_srgb(x, y, Y * b)[2] * self.maximum
def linearise(self, r = True, g = ..., b = ...):
'''
Convert the curves from formatted in standard RGB to linear RGB
@param r:bool Whether to convert the red colour curve
@param g:bool|... Whether to convert the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to convert the blue colour curve, defaults to `g` if `...`
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Convert colour space
if not r and not g and not b:
return
for i in range(i_size):
(r_, g_, b_) = standard_to_linear(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
if r: self.red[i] = r_ * self.maximum
if g: self.green[i] = g_ * self.maximum
if b: self.blue[i] = b_ * self.maximum
def standardise(self, r = True, g = ..., b = ...):
'''
Convert the curves from formatted in linear RGB to standard RGB
@param r:bool Whether to convert the red colour curve
@param g:bool|... Whether to convert the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to convert the blue colour curve, defaults to `g` if `...`
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Convert colour space
if not r and not g and not b:
return
for i in range(i_size):
(r_, g_, b_) = linear_to_standard(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
if r: self.red[i] = r_ * self.maximum
if g: self.green[i] = g_ * self.maximum
if b: self.blue[i] = b_ * self.maximum
def gamma(self, r, g = ..., b = ...):
'''
Apply gamma correction on the colour curves
@param r:float? The gamma parameter for the red colour curve
@param g:float|...? The gamma parameter for the green colour curve, defaults to `r` if `...`
@param b:float|...? The gamma parameter for the blue colour curve, defaults to `g` if `...`
'''
for (curve, level) in self.__value(r, g, b):
if not level == 1.0:
curve[:] = [(y / self.maximum) ** (1 / level) * self.maximum for y in curve]
def negative(self, r = True, g = ..., b = ...):
'''
Reverse the colour curves (negative image with gamma preservation)
@param r:bool Whether to invert the red colour curve
@param g:bool|... Whether to invert the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to invert the blue colour curve, defaults to `g` if `...`
'''
for curve in self.__bool(r, g, b):
curve[:] = reversed(curve)
def rgb_invert(self, r = True, g = ..., b = ...):
'''
Invert the colour curves (negative image with gamma invertion), using sRGB
@param r:bool Whether to invert the red colour curve
@param g:bool|... Whether to invert the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to invert the blue colour curve, defaults to `g` if `...`
'''
for curve in self.__bool(r, g, b):
curve[:] = [self.maximum - y for y in curve]
def cie_invert(self, r = True, g = ..., b = ...):
'''
Invert the colour curves (negative image with gamma invertion), using CIE xyY
@param r:bool Whether to invert the red colour curve
@param g:bool|... Whether to invert the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to invert the blue colour curve, defaults to `g` if `...`
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Manipulate the colour curves if any curve should be manipulated
if r or g or b:
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Invert illumination and convert to back sRGB
(r_, g_, b_) = ciexyy_to_srgb(x, y, 1 - Y)
# Apply the new values on the selected channels
if r: self.red[i] = r_ * self.maximum
if g: self.green[i] = g_ * self.maximum
if b: self.blue[i] = b_ * self.maximum
def sigmoid(self, r, g = ..., b = ...):
'''
Apply S-curve correction on the colour curves.
This is intended for fine tuning LCD monitors,
4.5 is good value start start testing at.
You would probably like to use rgb_limits before
this to adjust the black point as that is the
only way to adjust the black point on many LCD
monitors.
@param r:float? The sigmoid parameter for the red colour curve
@param g:float|...? The sigmoid parameter for the green colour curve, defaults to `r` if `...`
@param b:float|...? The sigmoid parameter for the blue colour curve, defaults to `g` if `...`
'''
for (curve, level) in self.__value(r, g, b):
for i in range(i_size):
try:
curve[i] = (0.5 - math.log(self.maximum / curve[i] - 1) / level) * self.maximum
except:
# Corner cases:
# curve[i] = 0 → 0 -- Division by zero
# curve[i] = self.maximum → self.maximum -- Logarithm of zero
pass
def rgb_limits(self, r_min, r_max, g_min = ..., g_max = ..., b_min = ..., b_max = ...):
'''
Changes the black point and the white point, using sRGB
@param r_min:float The red component value of the black point
@param r_max:float The red component value of the white point
@param g_min:float|... The green component value of the black point, defaults to `r_min`
@param g_max:float|... The green component value of the white point, defaults to `r_max`
@param b_min:float|... The blue component value of the black point, defaults to `g_min`
@param b_max:float|... The blue component value of the white point, defaults to `g_max`
'''
# Handle overloading
if g_min is ...: g_min = r_min
if g_max is ...: g_max = r_max
if b_min is ...: b_min = g_min
if b_max is ...: b_max = g_max
# Manipulate the colour curves
for (curve, (level_min, level_max)) in self.__values((r_min, r_max), (g_min, g_max), (b_min, b_max)):
# But not if the adjustments are neutral
if (level_min != 0) or (level_max != self.maximum):
curve[:] = [y * (level_max - level_min) + level_min for y in curve]
def cie_limits(self, r_min, r_max, g_min = ..., g_max = ..., b_min = ..., b_max = ...):
'''
Changes the black point and the white point, using CIE xyY
@param r_min:float The red component value of the black point
@param r_max:float The red component value of the white point
@param g_min:float|... The green component value of the black point, defaults to `r_min`
@param g_max:float|... The green component value of the white point, defaults to `r_max`
@param b_min:float|... The blue component value of the black point, defaults to `g_min`
@param b_max:float|... The blue component value of the white point, defaults to `g_max`
'''
# Handle overloading
if g_min is ...: g_min = r_min
if g_max is ...: g_max = r_max
if b_min is ...: b_min = g_min
if b_max is ...: b_max = g_max
# Check if we can reduce the overhead, we can if the adjustments are identical
same = (r_min == g_min == b_min) and (r_max == g_max == b_max)
# Check we need to do any adjustment
if (not same) or (not r_min == 0) or (not r_max == self.maximum):
if same:
# Manipulate all curves in one step if their adjustments are identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate illumination
Y = Y * (r_max - r_min) + r_min
# Convert back to sRGB
(r_, g_, b_) = ciexyy_to_srgb(x, y, Y)
self.red[i] = r_ * self.maximum
self.green[i] = g_ * self.maximum
self.blue[i] = b_ * self.maximum
else:
# Manipulate all curves individually if their adjustments are not identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate illumination and convert back to sRGB
self.red[i] = ciexyy_to_srgb(x, y, Y * (r_max - r_min) + r_min)[0] * self.maximum
self.green[i] = ciexyy_to_srgb(x, y, Y * (g_max - g_min) + g_min)[1] * self.maximum
self.blue[i] = ciexyy_to_srgb(x, y, Y * (b_max - b_min) + b_min)[2] * self.maximum
def manipulate(self, r, g = ..., b = ...):
'''
Manipulate the colour curves using a (lambda) function
@param r:(float)?→float Function to manipulate the red colour curve
@param g:(float)?→float|... Function to manipulate the green colour curve, defaults to `r` if `...`
@param b:(float)?→float|... Function to manipulate the blue colour curve, defaults to `g` if `...`
`None` means that nothing is done for that subpixel
The lambda functions thats a colour value and maps it to a new colour value.
For example, if the red value 0.5 is already mapped to 0.25, then if the function
maps 0.25 to 0.5, the red value 0.5 will revert back to being mapped to 0.5.
'''
for (curve, f) in self.__values(r, g, b):
curve[:] = [f(y) for y in curve]
def cie_manipulate(self, r, g = ..., b = ...):
'''
Manipulate the colour curves using a (lambda) function on the CIE xyY colour space
@param r:(float)?→float Function to manipulate the red colour curve
@param g:(float)?→float|... Function to manipulate the green colour curve, defaults to `r` if `...`
@param b:(float)?→float|... Function to manipulate the blue colour curve, defaults to `g` if `...`
`None` means that nothing is done for that subpixel
The lambda functions thats a colour value and maps it to a new illumination value.
For example, if the value 0.5 is already mapped to 0.25, then if the function
maps 0.25 to 0.5, the value 0.5 will revert back to being mapped to 0.5.
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Check if we can reduce the overhead, we can if the adjustments are identical
same = (r is g) and (g is b)
if same:
if r is None:
return
# Manipulate all curves in one step if their adjustments are identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate and convert by to sRGB
(r_, g_, b_) = ciexyy_to_srgb(x, y, r(Y))
self.red[i] = r_ * self.maximum
self.green[i] = g_ * self.maximum
self.blue[i] = b_ * self.maximum
elif any(f is not None for f in (r, g, b)):
# Manipulate all curves individually if their adjustments are not identical
# if we are given a function for any curve
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate and convert by to sRGB for selected channels individually
if r is not None: self.red[i] = ciexyy_to_srgb(x, y, r(Y))[0] * self.maximum
if g is not None: self.green[i] = ciexyy_to_srgb(x, y, g(Y))[1] * self.maximum
if b is not None: self.blue[i] = ciexyy_to_srgb(x, y, b(Y))[2] * self.maximum
def lower_resolution(self, rx_colours = None, ry_colours = None, gx_colours = ..., gy_colours = ..., bx_colours = ..., by_colours = ...):
'''
Emulates low colour resolution
@param rx_colours:int? The number of colours to emulate on the red encoding axis
@param ry_colours:int? The number of colours to emulate on the red output axis
@param gx_colours:int|...? The number of colours to emulate on the green encoding axis, `rx_colours` if `...`
@param gy_colours:int|...? The number of colours to emulate on the green output axis, `ry_colours` if `...`
@param bx_colours:int|...? The number of colours to emulate on the blue encoding axis, `gx_colours` if `...`
@param by_colours:int|...? The number of colours to emulate on the blue output axis, `gy_colours` if `...`
Where `None` is used the default value will be used, for *x_colours:es that is `i_size`,
and for *y_colours:es that is `o_size`
'''
# Handle overloading
if gx_colours is ...: gx_colours = rx_colours
if gy_colours is ...: gy_colours = ry_colours
if bx_colours is ...: bx_colours = gx_colours
if by_colours is ...: by_colours = gy_colours
# Select default values where default is requested
if rx_colours is None: rx_colours = i_size
if ry_colours is None: ry_colours = o_size
if gx_colours is None: gx_colours = i_size
if gy_colours is None: gy_colours = o_size
if bx_colours is None: bx_colours = i_size
if by_colours is None: by_colours = o_size
# Combine pair X and Y parameters for each channel
r_colours = (rx_colours, ry_colours)
g_colours = (gx_colours, gy_colours)
b_colours = (bx_colours, by_colours)
# Manipulate colour curves
for i_curve, (x_colours, y_colours) in self.__values(r_colours, g_colours, b_colours):
# But not if adjustment is neutral
if (x_colours == i_size) and (y_colours == o_size):
continue
o_curve = [0] * i_size
x_, y_, i_ = x_colours - 1, y_colours - 1, i_size - 1
for i in range(i_size):
# Scale encoding
x = int(i * x_colours / i_size)
x = int(x * i_ / x_)
# Scale output
y = int(i_curve[x] / self.maximum * y_ + 0.5)
o_curve[i] = y / y_ * self.maximum
i_curve[:] = o_curve
def start_over(self, r = True, g = ..., b = ...):
'''
Reverts the curves to identity mappings
@param r:bool Whether to reset the red colour curve
@param g:bool|... Whether to reset the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to reset the blue colour curve, defaults to `g` if `...`
'''
if self.depth > 0:
def make_ramp(size):
return [int(x * self.maximum / (size - 1) + 0.5) for x in range(size)]
else:
def make_ramp(size):
return [x / (size - 1) for x in range(size)]
for curve in self.__bool(r, g, b):
curve[:] = make_ramp(len(curve))
def clip_below(self, r = True, g = ..., b = ...):
'''
Clip all values below the actual minimum
@param r:bool Whether to clip the red colour curve
@param g:bool|... Whether to clip the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to clip the blue colour curve, defaults to `g` if `...`
'''
for curve in self.__bool(r, g, b):
curve[:] = [max(0, y) for y in curve]
def clip_above(self, r = True, g = ..., b = ...):
'''
Clip all values above the actual maximum
@param r:bool Whether to clip the red colour curve
@param g:bool|... Whether to clip the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to clip the blue colour curve, defaults to `g` if `...`
'''
for curve in self.__bool(r, g, b):
curve[:] = [min(y, self.maximum) for y in curve]
def clip(self, r = True, g = ..., b = ...):
'''
Clip all values below the actual minimum and above the actual maximum
@param r:bool Whether to clip the red colour curve
@param g:bool|... Whether to clip the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to clip the blue colour curve, defaults to `g` if `...`
'''
for curve in self.__bool(r, g, b):
curve[:] = [min(max(0, y), self.maximum) for y in curve]
class LibgammaCRTC(CRTC):
'''
A CRTC using the libgamma backend
'''
def __init__(self, screen, crtc):
'''
Constructor
The user should not use this, but use `get_outputs` instead
@param screen:LibgammaScreen The screen of the CRTC, using the libgamma backend
@param crtc:int The index of the CRTC
'''
import libgamma
CRTC.__init__(self)
self.crtc = libgamma.CRTC(screen.screen, crtc)
self.screen = screen
if screen.display.caps.crtc_restore:
self.restore = self.crtc.restore
else:
self.restore = None
info = self.crtc.information(~0)[0]
connector_types = {
libgamma.LIBGAMMA_CONNECTOR_TYPE_9PinDIN : '9PinDIN',
libgamma.LIBGAMMA_CONNECTOR_TYPE_Component : 'Component',
libgamma.LIBGAMMA_CONNECTOR_TYPE_Composite : 'Composite',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DSI : 'DSI',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DVI : 'DVI',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DVIA : 'DVIA',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DVID : 'DVID',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DVII : 'DVII',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DisplayPort : 'DisplayPort',
libgamma.LIBGAMMA_CONNECTOR_TYPE_HDMI : 'HDMI',
libgamma.LIBGAMMA_CONNECTOR_TYPE_HDMIA : 'HDMIA',
libgamma.LIBGAMMA_CONNECTOR_TYPE_HDMIB : 'HDMIB',
libgamma.LIBGAMMA_CONNECTOR_TYPE_LFP : 'LFP',
libgamma.LIBGAMMA_CONNECTOR_TYPE_LVDS : 'LVDS',
libgamma.LIBGAMMA_CONNECTOR_TYPE_SVIDEO : 'SVIDEO',
libgamma.LIBGAMMA_CONNECTOR_TYPE_TV : 'TV',
libgamma.LIBGAMMA_CONNECTOR_TYPE_VGA : 'VGA',
libgamma.LIBGAMMA_CONNECTOR_TYPE_VIRTUAL : 'VIRTUAL',
libgamma.LIBGAMMA_CONNECTOR_TYPE_eDP : 'eDP'
}
subpixel_orders = {
libgamma.LIBGAMMA_SUBPIXEL_ORDER_HORIZONTAL_BGR : 'BGR',
libgamma.LIBGAMMA_SUBPIXEL_ORDER_HORIZONTAL_RGB : 'RGB',
libgamma.LIBGAMMA_SUBPIXEL_ORDER_NONE : 'None',
libgamma.LIBGAMMA_SUBPIXEL_ORDER_VERTICAL_BGR : 'vBGR',
libgamma.LIBGAMMA_SUBPIXEL_ORDER_VERTICAL_RGB : 'vRGB'
}
self.edid = None if info.edid_error else libgamma.behex_edid_uppercase(info.edid)
self.width_mm = None if info.width_mm_error else info.width_mm
self.height_mm = None if info.height_mm_error else info.height_mm
self.red_gamma_size = None if info.gamma_size_error else info.red_gamma_size
self.green_gamma_size = None if info.gamma_size_error else info.green_gamma_size
self.blue_gamma_size = None if info.gamma_size_error else info.blue_gamma_size
self.gamma_depth = None if info.gamma_depth_error else info.gamma_depth
self.gamma_support = None if info.gamma_support_error else info.gamma_support
self.subpixel_order = None if info.subpixel_order_error else info.subpixel_order
if self.subpixel_order in subpixel_orders:
self.subpixel_order = subpixel_orders[self.subpixel_order]
self.active = None if info.active_error else info.active
self.connector_name = None if info.connector_name_error else info.connector_name
self.connector_type = None if info.connector_type_error else info.connector_type
if self.connector_type in connector_types:
self.connector_type = connector_types[self.connector_type]
if not info.gamma_size_error and not info.gamma_depth_error:
self.ramps = libgamma.GammaRamps(self.red_gamma_size, self.green_gamma_size,
self.blue_gamma_size, depth = self.gamma_depth)
@property
def backend(self):
'''
The backend which is used to access the CLUT:s, is either the
name of a library or the name of a display server or protocol
@return :str The backend which is used to access the CLUT:s
'''
return 'libgamma'
def get_gamma(self, low_priority = None, high_priority = None, coalesce = True):
'''
Get the gamma ramps on the CRTC or the table of applied adjustments
@param low_priority:int? Do not return adjustments with lower priority than
this value, `None` means that there is not lower bound.
Must be `None` if cooperative gamma is not supported.
@param high_priority:int? Do not return adjustments with higher priority than
this value, `None` means that there is not upper bound.
Must be `None` if cooperative gamma is not supported.
@param coalesce:bool If `False` return the adjustment table, if `True`
return the resulting ramps of all adjustments with a
priority within [`low_priority`, `high_priority`].
Must be `True` if cooperative gamma is not supported.
@return :Ramps|list<(class:str, priority:int, ramps:Ramps)>
The resulting ramps (if `coalesce` is `True`, or the
ramps if cooperative gamma is not supported) or
a list, sorted by priority, of the adjustments (if
`coalesce` is `False`), where each element is a tuple
with the adjustment's identifier, priority, and ramps.
'''
if low_priority is not None or high_priority is not None or not coalesce:
raise Exception('Cooperative gamma is not supported')
self.crtc.get_gamma(self.ramps)
return Ramps.copy(self.ramps)
def set_gamma(self, ramps, priority = None, rule = None, lifespan = 1):
'''
Set the gamma ramps on the CRTC
@param ramps:Ramps The gamma ramps
@param priority:int? The priority of the adjustment, `None` for the default.
Must be `None` (default) if cooperative gamma is not supported.
@param rule:str? The rule of the adjustment, `None` for the default.
The rule is the last part of the adjustment's identifier,
if this is unique within the program, it should be universally
unique unless another program is intentionally make it not so.
Must be `None` (default) if cooperative gamma is not supported.
@param lifespan:int The lifespan of the algorithm: `Lifespan.UNTIL_DEATH`,
`Lifespan.UNTIL_REMOVAL` (default), or `Lifespan.REMOVE`
@return The ramps which the adjustments are written to, this will
either be `ramps` or `self.ramps`
'''
import libgamma
if priority is not None or rule is not None or lifespan != 1:
raise Exception('Cooperative gamma is not supported')
if ramps is self.ramps:
self.crtc.set_gamma(ramps)
return ramps
match = ramps.depth == self.gamma_depth
match = match and len(ramps.red) == self.red_gamma_size
match = match and len(ramps.green) == self.green_gamma_size
match = match and len(ramps.blue) == self.blue_gamma_size
if not match:
ramps = Ramps.copy(ramps, self.gamma_depth,
(self.red_gamma_size, self.green_gamma_size, self.blue_gamma_size))
if isinstance(ramps, libgamma.GammaRamps):
self.crtc.set_gamma(ramps)
return
for i in range(len(ramps.red)):
self.ramps.red[i] = ramps.red[i]
for i in range(len(ramps.green)):
self.ramps.green[i] = ramps.green[i]
for i in range(len(ramps.blue)):
self.ramps.blue[i] = ramps.blue[i]
self.crtc.set_gamma(self.ramps)
return self.ramps
class LibgammaScreen(Screen):
'''
A screen (or graphics card) using the libgamma backend
'''
def __init__(self, display, screen, crtcs = None):
'''
Constructor
The user should not use this, but use `get_outputs` instead
@param display:LibgammaDisplay The display of the screen, using the libgamma backend
@param screen:int The index of the screen
@param crtcs:set<int|str>? List of CRTC:s to include, `None` for all
'''
import libgamma
self.screen = libgamma.Partition(display.display, screen)
self.display = display
if display.caps.partition_restore:
self.restore = self.screen.restore
elif display.caps.crtc_restore:
self.restore = self.__restore_all_crtcs
else:
self.restore = None
self.crtcs = []
if crtcs is not None:
crtcs = list(crtcs)
for i in range(self.screen.crtcs_available):
crtc = LibgammaCRTC(self, i)
if (crtcs is None) or (i in crtcs) or (crtc.connector_name in crtcs):
self.crtcs.append(crtc)
elif isinstance(crtc.edid, str) and (crtc.edid.upper() in crtcs):
self.crtcs.append(crtc)
else:
del crtc
@property
def backend(self):
'''
The backend which is used to access the CLUT:s, is either the
name of a library or the name of a display server or protocol
@return :str The backend which is used to access the CLUT:s
'''
return 'libgamma'
def __restore_all_crtcs(self):
'''
Restore the CLUT:s to the (configured) system defaults, for each CRTC
'''
for crtc in self.crtcs:
crtc.restore()
class LibgammaDisplay(Display):
'''
A display using the libgamma backend
'''
def __init__(self, method = None, display = None, screens = None, crtcs = None):
'''
Constructor
The user should not use this, but use `get_outputs` instead
@param method:str? The adjustment method, `None` for the best available
@param display:str? The display, `None` to read the environment, or use
the only display if the adjustment method only supports
one display (e.g. like on Windows)
@param screens:set<int>? Lists of screens to include, `None` for all
@param crtcs:set<int|str>|dict<int,set<int|str>>?
List of CRTC:s to include, `None` for all, elements can
either be indices, connector name, or EDID:s; or a
dictionary mapping for screen indices to such lists
'''
import libgamma
self.cooperative = False
if method is None:
method = get_adjustment_methods()[0]
self.display = libgamma.Site(method, display)
self.caps = libgamma.method_capabilities(method)
if self.caps.site_restore:
self.restore = self.display.restore
elif self.caps.partition_restore or self.caps.crtc_restore:
self.restore = self.__restore_all_partitions
else:
self.restore = None
if screens is None:
screens = range(self.display.partitions_available)
self.screens = []
self.crtcs = []
for screen in screens:
cs = crtcs
if isinstance(cs, dict):
cs = cs[screen] if screen in cs else []
screen = LibgammaScreen(self, screen, cs)
self.screens.append(screen)
self.crtcs.extend(screen.crtcs)
@property
def backend(self):
'''
The backend which is used to access the CLUT:s, is either the
name of a library or the name of a display server or protocol
@return :str The backend which is used to access the CLUT:s
'''
return 'libgamma'
@property
def lowest_priority(self):
'''
Return the lowest filter priority accepted by the display server,
or other backend implementing cooperative gamma, that is, the
priority that guarantees that no other filter, that is not also
using this priority, is applied after a filter
@return :int? The lowest accepted filter priority (applied last),
`None` if cooperative gamma is not supported
'''
return None
@property
def highest_priority(self):
'''
Return the highest filter priority accepted by the display server,
or other backend implementing cooperative gamma, that is, the
priority that guarantees that no other filter, that is not also
using this priority, is applied before a filter
@return :int? The highest accepted filter priority (applied first),
`None` if cooperative gamma is not supported
'''
return None
def __restore_all_partitions(self):
'''
Restore the CLUT:s to the (configured) system defaults, for each screen
'''
for screen in self.screens:
screen.restore()
def get_adjustment_methods(libgamma_level = 0):
'''
Returns a list of available adjustment methods
@param libgamma_level:int Which libgamma adjustment methods to include:
-1: None
0: Methods that the environment suggests will work, excluding fake.
1: Methods that the environment suggests will work, including fake.
2: All real non-fake methods.
3: All real methods.
4: All methods.
@return :list<str> Adjustment method in order of preference
'''
ret = []
if libgamma_level >= 0:
try:
import libgamma
lgamma_meths = libgamma.list_methods(libgamma_level)
lgamma_map = {
libgamma.LIBGAMMA_METHOD_DUMMY : 'dummy',
libgamma.LIBGAMMA_METHOD_X_RANDR : 'randr',
libgamma.LIBGAMMA_METHOD_X_VIDMODE : 'vidmode',
libgamma.LIBGAMMA_METHOD_LINUX_DRM : 'drm',
libgamma.LIBGAMMA_METHOD_W32_GDI : 'w32gdi',
libgamma.LIBGAMMA_METHOD_QUARTZ_CORE_GRAPHICS : 'quartz'
}
ret += [lgamma_map[m] if m in lgamma_map else m for m in lgamma_meths]
except:
pass
return ret
def get_outputs(method = None, display = None, screens = None, crtcs = None):
'''
Get access to CRTC for editing the their gamma ramps
@param method:str? The adjustment method, `None` for the best available.
"dummy" for libgamma with dummy method,
"randr" for libgamma with X's RAndR protocol,
"vidmode" for libgamma with X's VidMode protocol,
"drm" for libgamma with Direct Rendering Manager,
"w32gdi" for libgamma with Window's GDI,
"quartz" for libgamma with Quartz's (MacOS's) Core Graphics
@param display:str? The display, `None` to read the environment, or use
the only display if the adjustment method only supports
one display (e.g. like on Windows)
@param screens:set<int>? Lists of screens to include, `None` for all
@param crtcs:set<int|str>|dict<int,set<int|str>>?
List of CRTC:s to include, `None` for all, elements can
either be indices, connector name, or EDID:s; or a
dictionary mapping for screen indices to such lists
@return :Display A display
'''
if isinstance(method, str):
#try:
import libgamma
lgamma_meths = {
'dummy' : libgamma.LIBGAMMA_METHOD_DUMMY,
'randr' : libgamma.LIBGAMMA_METHOD_X_RANDR,
'vidmode' : libgamma.LIBGAMMA_METHOD_X_VIDMODE,
'drm' : libgamma.LIBGAMMA_METHOD_LINUX_DRM,
'w32gdi' : libgamma.LIBGAMMA_METHOD_W32_GDI,
'quartz' : libgamma.LIBGAMMA_METHOD_QUARTZ_CORE_GRAPHICS
}
return LibgammaDisplay(lgamma_meths[method], display, screens, crtcs)
#except:
# pass
#raise Exception("Adjustment method %s is not available" % method)
else:
return LibgammaDisplay(method, display, screen, crtc)
|