1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
# -*- python -*-
# This example demonstrates how you can make a
# multithreaded configurations script.
# This file is dual-licensed under GNU General Public License
# version 3 and GNU Free Documentation License version 1.3.
# Copyright © 2014, 2015, 2016, 2017 Mattias Andrée (m@maandree.se)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Copyright © 2014, 2015, 2016, 2017 Mattias Andrée (m@maandree.se)
#
# Permission is granted to copy, distribute and/or modify this document
# under the terms of the GNU Free Documentation License, Version 1.3
# or any later version published by the Free Software Foundation;
# with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
# You should have received a copy of the GNU General Public License
# along with this software package. If not, see <http://www.gnu.org/licenses/>.
import threading
# Geographical coodinates.
# ("Kristall, vertikal accent i glas och stål" (Crystal, vertical accent
# in glass and steal) in this example. A glass obelisk, lit from the inside
# with adjustable colours and a default colour of 5600 K, in the middle
# of a hyperelliptic roundabout.)
latitude, longitude = 59.3326, 18.0652
# Adjust settings by solar elevation.
get_dayness = lambda : sun(latitude, longitude)
# Colour temperature at high day and high night, respectively.
temperature_day, temperature_night = [6500], [3700]
# Gamma of the monitors.
gamma_red = [1.16, 1.10]
gamma_green = [1.15, 1.16]
gamma_blue = [1.11, 1.10]
# Make colour curves thread local.
class threadlocal:
def __init__(self, obj):
self.default = obj
self.tmap = {}
def __getitem__(self, i):
t = threading.get_ident()
if t not in self.tmap:
self.tmap[t] = self.default[:]
return self.tmap[t][i]
def __len__(self):
t = threading.get_ident()
if t not in self.tmap:
self.tmap[t] = self.default[:]
return len(self.tmap[t])
def __setitem__(self, i, x):
t = threading.get_ident()
if t not in self.tmap:
self.tmap[t] = self.default[:]
self.tmap[t][i] = x
def __delitem__(self, i):
t = threading.get_ident()
if t not in self.tmap:
self.tmap[t] = self.default[:]
del self.tmap[t][x]
r_curve = threadlocal([i / (i_size - 1) for i in range(i_size)])
g_curve = threadlocal([i / (i_size - 1) for i in range(i_size)])
b_curve = threadlocal([i / (i_size - 1) for i in range(i_size)])
## cmf_10deg uses non-thread safe cache, run once in advance so it is not done by the threads.
cmf_10deg(0)
# Thread synchronisation barrier.
barrier = threading.Barrier(len(gamma_red) + 1)
# Help functions for colour interpolation.
interpol, purify = None, None
# Parameters in `periodically`.
fade_ = None
# randr is not threadsafe, and absolutely not if you have multiple screens.
# drm can be threadsafe but is by default not.
# This semaphore is used to make sure that two threads are not accessing randr or drm at the same time.
flush_semaphore = threading.Semaphore()
def adjust(m):
'''
Adjust monitor colours
@param m:int The CRTC index
'''
while True:
# Wait for start cue.
barrier.wait()
# Calculate temperature.
temperature_ = interpol(temperature_day, temperature_night)
if fade_ is not None:
temperature_ = purify(temperature_, 6500)
# Remove settings from last run.
start_over()
# Apply colour temperature using raw CIE 1964 10 degree CMF data with interpolation.
temperature(temperature_, lambda t : divide_by_maximum(cmf_10deg(t)))
# Clip colour curves to fit [0, 1] to avoid errors by complex numbers.
clip()
# Apply gamma correction to monitor.
gamma(gamma_red[m], gamma_green[m], gamma_blue[m])
# Flush settings to monitor.
flush_semaphore.acquire()
(drm if ttymode else randr)(m)
flush_semaphore.release()
# Signal thread completion.
barrier.wait()
# Create threads.
for m in range(len(gamma_red)):
thread = threading.Thread(target = adjust, args = (m,))
thread.setDaemon(True)
thread.start()
last_dayness = None
def periodically(year, month, day, hour, minute, second, weekday, fade):
'''
Invoked periodically
If you want to control at what to invoke this function next time
you can set the value of the global variable `wait_period` to the
number of seconds to wait before invoking this function again.
The value does not need to be an integer.
@param year:int The year
@param month:int The month, 1 = January, 12 = December
@param day:int The day, minimum value is 1, probable maximum value is 31 (*)
@param hour:int The hour, minimum value is 0, maximum value is 23
@param minute:int The minute, minimum value is 0, maximum value is 59
@param second:int The second, minimum value is 0, probable maximum value is 60 (**)
@param weekday:int The weekday, 1 = Monday, 7 = Sunday
@param fade:float? Blueshift can use this function to fade into a state when it start
or exits. `fade` can either be negative, zero or positive or `None`,
but the magnitude of value cannot exceed 1. When Blueshift starts,
this function will be invoked multiple with the time parameters
of the time it is invoked and each time `fade` will increase towards
1, starting at 0, when the value is 1, the settings should be applied
to 100 %. After this this function will be invoked once again with
`fade` being `None`. When Blueshift exits the same behaviour is used
except, `fade` decrease towards -1 but start slightly below 0, when
-1 is reached all settings should be normal. Then Blueshift will NOT
invoke this function with `fade` being `None`, instead it will by
itself revert all settings and quit.
(*) Can be exceeded if the calendar system is changed, like in 1712-(02)Feb-30
(**) See https://en.wikipedia.org/wiki/Leap_second
'''
global last_dayness, wait_period, interpol, purify, fade_
dayness = get_dayness()
# Do not do unnecessary work.
if fade is None:
if dayness == last_dayness:
return
last_dayness = dayness
# Pass parameters to threads.
fade_ = fade
# Help functions for colour interpolation.
interpol = lambda _day, _night : _day[m % len(_day)] * dayness + _night[m % len(_night)] * (1 - dayness)
purify = lambda current, pure : current * abs(fade) + pure * (1 - abs(fade))
# Signal all threads to start.
barrier.wait()
# Wait for all threads.
barrier.wait()
def reset():
'''
Invoked to reset the displays
'''
for m in range(len(gamma_red)):
# Remove settings from last run.
start_over()
# Apply gamma correction to monitor.
gamma(gamma_red[m], gamma_green[m], gamma_blue[m])
# Flush settings to monitor.
(drm if ttymode else randr)(m)
# Set transition time, 0 on high day and 5 seconds on high night.
fadein_time = 5 * (1 - get_dayness())
# Do 10 changes per second.
fadein_steps = fadein_time * 10
# Transition on exit in the same way, calculated on exit.
old_signal_SIGTERM = signal_SIGTERM
if 'SIGTERM' not in conf_storage:
conf_storage['SIGTERM'] = old_signal_SIGTERM
else:
old_signal_SIGTERM = conf_storage['SIGTERM']
def signal_SIGTERM(signum, frame):
global fadeout_time, fadeout_steps
fadeout_time = 5 * (1 - get_dayness())
fadeout_steps = fadeout_time * 10
old_signal_SIGTERM(signum, frame)
|