diff options
Diffstat (limited to 'src')
| -rwxr-xr-x | src/__main__.py | 2 | ||||
| -rw-r--r-- | src/adhoc.py | 2 | ||||
| -rw-r--r-- | src/solar.py | 782 | 
3 files changed, 3 insertions, 783 deletions
| diff --git a/src/__main__.py b/src/__main__.py index b58cfdc..e93b196 100755 --- a/src/__main__.py +++ b/src/__main__.py @@ -561,7 +561,7 @@ if have_argparser:                         None, True, ArgParser.standard_abbreviations())      # Populate parser with possible options -    dn = '\nUse twice or daytime and nighttime respectively' +    dn = '\nUse twice for daytime and nighttime respectively'      parser.add_argumented(['-c', '--configurations'], 0, 'FILE', 'Select configuration file')      parser.add_argumentless(['-p', '--panic-gate', '--panicgate'], 0, 'Skip transition into initial settings')      parser.add_argumented(['-g', '--gamma'], 0, 'RGB|R:G:B', 'Set gamma correction' + dn) diff --git a/src/adhoc.py b/src/adhoc.py index 8d3a57f..0751b1a 100644 --- a/src/adhoc.py +++ b/src/adhoc.py @@ -41,7 +41,7 @@ if (rgb_temperatures is None) and (cie_temperatures is None):      # to 3700 K during the day, and 6500 K (neutral) during      # the night. Do not use CIE xyY, hence set cie_temperatures      # to 6500 K (neutral). -    rgb_temperatures = ['3700', '6500'] +    rgb_temperatures = ['3500', '5500']      cie_temperatures = ['6500', '6500']  else:      # If cie_temperatures is specified but not rgb_temperatures, diff --git a/src/solar.py b/src/solar.py index 38fa11b..c8bbea1 100644 --- a/src/solar.py +++ b/src/solar.py @@ -17,58 +17,7 @@  # This module implements algorithms for calculating information about the Sun. -from math import * -import time - - -SOLAR_ELEVATION_SUNSET_SUNRISE = 0.0 -''' -:float  The Sun's elevation at sunset and sunrise, -        measured in degrees -''' - -SOLAR_ELEVATION_CIVIL_DUSK_DAWN = -6.0 -''' -:float  The Sun's elevation at civil dusk and civil -        dawn, measured in degrees -''' - -SOLAR_ELEVATION_NAUTICAL_DUSK_DAWN = -12.0 -''' -:float  The Sun's elevation at nautical dusk and -        nautical dawn, measured in degrees -''' - -SOLAR_ELEVATION_ASTRONOMICAL_DUSK_DAWN = -18.0 -''' -:float  The Sun's elevation at astronomical dusk -        and astronomical dawn, measured in degrees -''' - -SOLAR_ELEVATION_RANGE_TWILIGHT = (-18.0, 0.0) -''' -:(float, float)  The Sun's lowest and highest elevation during -                 all periods of twilight, measured in degrees -''' - -SOLAR_ELEVATION_RANGE_CIVIL_TWILIGHT = (-6.0, 0.0) -''' -:(float, float)  The Sun's lowest and highest elevation -                 during civil twilight, measured in degrees -''' - -SOLAR_ELEVATION_RANGE_NAUTICAL_TWILIGHT = (-12.0, -6.0) -''' -:(float, float)  The Sun's lowest and highest elevation -                 during nautical twilight, measured in degrees -''' - -SOLAR_ELEVATION_RANGE_ASTRONOMICAL_TWILIGHT = (-18.0, -12.0) -''' -:(float, float)  The Sun's lowest and highest elevation during -                 astronomical twilight, measured in degrees -''' - +from solar_python import *  def sun(latitude, longitude, t = None, low = -6.0, high = 3.0): @@ -89,735 +38,6 @@ def sun(latitude, longitude, t = None, low = -6.0, high = 3.0):      return min(max(0, e), 1) - -# The following functions are used to calculate the result for `sun` -# (most of them) but could be used for anything else. There name is -# should tell you enough, `t` (and `noon`) is in Julian centuries -# except for in the convertion methods. - - -def julian_day_to_epoch(t): -    ''' -    Converts a Julian Day timestamp to a POSIX time timestamp -     -    @param   t:float  The time in Julian Days -    @return  :float   The time in POSIX time -    ''' -    return (t - 2440587.5) * 86400.0 - - -def epoch_to_julian_day(t): -    ''' -    Converts a POSIX time timestamp to a Julian Day timestamp -     -    @param   t:float  The time in POSIX time -    @return  :float   The time in Julian Days -    ''' -    return t / 86400.0 + 2440587.5 - - -def julian_day_to_julian_centuries(t): -    ''' -    Converts a Julian Day timestamp to a Julian Centuries timestamp -     -    @param   t:float  The time in Julian Days -    @return  :float   The time in Julian Centuries -    ''' -    return (t - 2451545.0) / 36525.0 - - -def julian_centuries_to_julian_day(t): -    ''' -    Converts a Julian Centuries timestamp to a Julian Day timestamp -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The time in Julian Days -    ''' -    return t * 36525.0 + 2451545.0 - - -def epoch_to_julian_centuries(t): -    ''' -    Converts a POSIX time timestamp to a Julian Centuries timestamp -     -    @param   t:float  The time in POSIX time -    @return  :float   The time in Julian Centuries -    ''' -    return julian_day_to_julian_centuries(epoch_to_julian_day(t)) - - -def julian_centuries_to_epoch(t): -    ''' -    Converts a Julian Centuries timestamp to a POSIX time timestamp -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The time in POSIX time -    ''' -    return julian_day_to_epoch(julian_centuries_to_julian_day(t)) - - -def epoch(): -    ''' -    Get current POSIX time -     -    @return  :float  The current POSIX time -    ''' -    return time.time() - - -def julian_day(): -    ''' -    Get current Julian Day time -     -    @return  :float  The current Julian Day time -    ''' -    return epoch_to_julian_day(epoch()) - - -def julian_centuries(): -    ''' -    Get current Julian Centuries time (100 Julian days since J2000) -     -    @return  :float  The current Julian Centuries time -    ''' -    return epoch_to_julian_centuries(epoch()) - - -def radians(deg): -    ''' -    Convert an angle from degrees to radians -     -    @param   deg:float  The angle in degrees -    @return  :float     The angle in radians -    ''' -    return deg * pi / 180 - - -def degrees(rad): -    ''' -    Convert an angle from radians to degrees -     -    @param   rad:float  The angle in radians -    @return  :float     The angle in degrees -    ''' -    return rad * 180 / pi - - -def sun_geometric_mean_longitude(t): -    ''' -    Calculates the Sun's geometric mean longitude -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The Sun's geometric mean longitude in radians -    ''' -    return radians((0.0003032 * t ** 2 + 36000.76983 * t + 280.46646) % 360) -    # CANNIBALISERS: -    #     The result of this function should always be positive, this -    #     means that after division modulo 360 but before `radians`, -    #     you will need to add 360 if the value is negative. This can -    #     only happen if `t` is negative, which can only happen for date -    #     times before 2000-(01)Jan-01 12:00:00 UTC par division modulo -    #     implementations with the signess of atleast the left operand. -    #     More precively, it happens between cirka 1970-(01)Jan-11 -    #     16:09:02 UTC and cirka -374702470660351740 seconds before -    #     January 1, 1970 00:00 UTC, which is so far back in time -    #     it cannot be reliable pinned down to the right year, but it -    #     is without a shadow of a doubt looooong before the Earth -    #     was formed, is right up there with the age of the Milky Way -    #     and the universe itself. - - -def sun_geometric_mean_anomaly(t): -    ''' -    Calculates the Sun's geometric mean anomaly -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The Sun's geometric mean anomaly in radians -    ''' -    return radians(-0.0001537 * t ** 2 + 35999.05029 * t + 357.52911) - - -def earth_orbit_eccentricity(t): -    ''' -    Calculates the Earth's orbit eccentricity -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The Earth's orbit eccentricity -    ''' -    return -0.0000001267 * t ** 2 - 0.000042037 * t + 0.016708634 - - -def sun_equation_of_centre(t): -    ''' -    Calculates the Sun's equation of the centre, the difference between -    the true anomaly and the mean anomaly -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The Sun's equation of the centre, in radians -    ''' -    a = sun_geometric_mean_anomaly(t) -    rc = sin(1 * a) * (-0.000014 * t ** 2 - 0.004817 * t + 1.914602) -    rc += sin(2 * a) * (-0.000101 * t + 0.019993) -    rc += sin(3 * a) * 0.000289 -    return radians(rc) - - -def sun_real_longitude(t): -    ''' -    Calculates the Sun's real longitudinal position -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The longitude, in radians -    ''' -    rc = sun_geometric_mean_longitude(t) -    return rc + sun_equation_of_centre(t) - - -def sun_apparent_longitude(t): -    ''' -    Calculates the Sun's apparent longitudinal position -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The longitude, in radians -    ''' -    rc = degrees(sun_real_longitude(t)) - 0.00569 -    rc -= 0.00478 * sin(radians(-1934.136 * t + 125.04)) -    return radians(rc) - - -def mean_ecliptic_obliquity(t): -    ''' -    Calculates the mean ecliptic obliquity of the Sun's -    apparent motion without variation correction -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The uncorrected mean obliquity, in radians -    ''' -    rc = 0.001813 * t ** 3 - 0.00059 * t ** 2 - 46.815 * t + 21.448 -    rc = 26 + rc / 60 -    rc = 23 + rc / 60 -    return radians(rc) - - -def corrected_mean_ecliptic_obliquity(t): -    ''' -    Calculates the mean ecliptic obliquity of the Sun's -    apparent motion with variation correction -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The mean obliquity, in radians -    ''' -    rc = -1934.136 * t + 125.04 -    rc = 0.00256 * cos(radians(rc)) -    rc += degrees(mean_ecliptic_obliquity(t)) -    return radians(rc) - - -def solar_declination(t): -    ''' -    Calculates the Sun's declination -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The Sun's declination, in radians -    ''' -    rc = sin(corrected_mean_ecliptic_obliquity(t)) -    rc *= sin(sun_apparent_longitude(t)) -    return asin(rc) - - -def equation_of_time(t): -    ''' -    Calculates the equation of time, the discrepancy -    between apparent and mean solar time -     -    @param   t:float  The time in Julian Centuries -    @return  :float   The equation of time, in degrees -    ''' -    l = sun_geometric_mean_longitude(t) -    e = earth_orbit_eccentricity(t) -    m = sun_geometric_mean_anomaly(t) -    y = corrected_mean_ecliptic_obliquity(t) -    y = tan(y / 2) ** 2 -    rc = y * sin(2 * l) -    rc += (4 * y * cos(2 * l) - 2) * e * sin(m) -    rc -= 0.5 * y ** 2 * sin(4 * l) -    rc -= 1.25 * e ** 2 * sin(2 * m) -    return 4 * degrees(rc) - - -def hour_angle_from_elevation(latitude, declination, elevation): -    ''' -    Calculates the solar hour angle from the Sun's elevation -     -    @param   longitude:float    The longitude in degrees eastwards -                                from Greenwich, negative for westwards -    @param   declination:float  The declination, in degrees -    @param   hour_angle:float   The Sun's elevation, in degrees -    @return  :float             The solar hour angle, in degrees -    ''' -    if elevation == 0: -        return 0 -    rc = cos(abs(elevation)) -    rc -= sin(radians(latitude)) * sin(declination) -    rc /= cos(radians(latitude)) * cos(declination) -    rc = acos(rc) -    return -rc if (rc < 0) == (elevation < 0) else rc; - - -def elevation_from_hour_angle(latitude, declination, hour_angle): -    ''' -    Calculates the Sun's elevation from the solar hour angle -     -    @param   longitude:float    The longitude in degrees eastwards -                                from Greenwich, negative for westwards -    @param   declination:float  The declination, in degrees -    @param   hour_angle:float   The solar hour angle, in degrees -    @return  :float             The Sun's elevation, in degrees -    ''' -    rc = cos(radians(latitude)) -    rc *= cos(hour_angle) * cos(declination) -    rc += sin(radians(latitude)) * sin(declination) -    return asin(rc) - - -def time_of_solar_noon(t, longitude): -    ''' -    Calculates the time of the closest solar noon -     -    @param   t:float          A time close to the seeked time, -                              in Julian Centuries -    @param   longitude:float  The longitude in degrees eastwards from -                              Greenwich, negative for westwards -    @return  :float           The time, in Julian Centuries, -                              of the closest solar noon -    ''' -    t, rc = julian_centuries_to_julian_day(t), longitude -    for (k, m) in ((-360, 0), (1440, -0.5)): -        rc = julian_day_to_julian_centuries(t + m + rc / k) -        rc = 720 - 4 * longitude - equation_of_time(rc) -    return rc - - -def time_of_solar_elevation(t, noon, latitude, longitude, elevation): -    ''' -    Calculates the time the Sun has a specified apparent -    elevation at a geographical position -     -    @param   t:float          A time close to the seeked time, -                              in Julian Centuries -    @param   noon:float       The time of the closest solar noon -    @param   latitude:float   The latitude in degrees northwards from -                              the equator, negative for southwards -    @param   longitude:float  The longitude in degrees eastwards from -                              Greenwich, negative for westwards -    @param   elevation:float  The solar elevation, in degrees -    @return  :float           The time, in Julian Centuries, -                              of the specified elevation -    ''' -    rc = noon -    rc, et = solar_declination(rc), equation_of_time(rc) -    rc = hour_angle_from_elevation(latitude, rc, elevation) -    rc = 720 - 4 * (longitude + degrees(rc)) - et -     -    rc = julian_day_to_julian_centuries(julian_centuries_to_julian_day(t) + rc / 1440) -    rc, et = solar_declination(rc), equation_of_time(rc) -    rc = hour_angle_from_elevation(latitude, rc, elevation) -    rc = 720 - 4 * (longitude + degrees(rc)) - et -    return rc - - -def solar_elevation_from_time(t, latitude, longitude): -    ''' -    Calculates the Sun's elevation as apparent -    from a geographical position -     -    @param   t:float          The time in Julian Centuries -    @param   latitude:float   The latitude in degrees northwards from -                              the equator, negative for southwards -    @param   longitude:float  The longitude in degrees eastwards from -                              Greenwich, negative for westwards -    @return  :float           The Sun's apparent at the specified time -                              as seen from the specified position, -                              measured in degrees -    ''' -    rc = julian_centuries_to_julian_day(t) -    rc = (rc - float(int(rc + 0.5)) - 0.5) * 1440 -    rc = 720 - rc - equation_of_time(t) -    rc = radians(rc / 4 - longitude) -    return elevation_from_hour_angle(latitude, solar_declination(t), rc) - - -def solar_elevation(latitude, longitude, t = None): -    ''' -    Calculates the Sun's elevation as apparent -    from a geographical position -     -    @param   latitude:float   The latitude in degrees northwards from -                              the equator, negative for southwards -    @param   longitude:float  The longitude in degrees eastwards from -                              Greenwich, negative for westwards -    @param   t:float?         The time in Julian Centuries, `None` -                              for the current time -    @return  :float           The Sun's apparent at the specified time -                              as seen from the specified position, -                              measured in degrees -    ''' -    rc = julian_centuries() if t is None else t -    rc = solar_elevation_from_time(rc, latitude, longitude) -    return degrees(rc) - - - -def have_sunrise_and_sunset(latitude, t = None): -    ''' -    Determine whether solar declination currently is -    so that there can be sunrises and sunsets. If not, -    you either have 24-hour daytime or 24-hour nighttime. -     -    @param   latitude:float  The latitude in degrees northwards from -                             the equator, negative for southwards -    @param   t:float?        The time in Julian Centuries, `None` -                             for the current time -    @return                  Whether there can be sunrises and -                             sunsets where you are located -    ''' -    t = julian_centuries() if t is None else t -    d = degrees(solar_declination(t)) -    ## Covert everything to the Northern hemisphere -    latitude = abs(latitude) -    if d >= 0: -        ## Northern summer -        return -90 + d < latitude < 90 - d -    else: -        ## Northern winter -        return -90 - d < latitude < 90 + d - - -def is_summer(latitude, t = None): -    ''' -    Determine whether it is summer -     -    @param   latitude:float  The latitude in degrees northwards from -                             the equator, negative for southwards -    @param   t:float?        The time in Julian Centuries, `None` -                             for the current time -    @return                  Whether it is summer on the hemisphere -                             you are located on -    ''' -    t = julian_centuries() if t is None else t -    d = solar_declination(t) -    return (d > 0) == (latitude > 0) - - -def is_winter(latitude, t = None): -    ''' -    Determine whether it is winter -     -    @param   latitude:float  The latitude in degrees northwards from -                             the equator, negative for southwards -    @param   t:float?        The time in Julian Centuries, `None` -                             for the current time -    @return                  Whether it is winter on the hemisphere -                             you are located on -    ''' -    t = julian_centuries() if t is None else t -    d = solar_declination(t) -    return not ((d > 0) == (latitude > 0)) - - - -def solar_prediction(delta, requested, fun, epsilon = 0.000001, span = 0.01, t = None): -    ''' -    Predict the time point of the next or previous -    time an arbitrary condition is meet -     -    @param   delta:float          Iteration step size, negative for past -                                  event, positive for future event -    @param   requested:float      The value returned by `fun` for which to -                                  calculate the time point of occurrence -    @param   fun:(t:float)→float  Function that calculate the data of interest -    @param   epsilon:float        Error tolerance for `requested` -    @param   span:float           The number of Julian centuries (0,01 for -                                  one year) to restrict the search to -    @param   t:float?             The time in Julian Centuries, `None` for -                                  the current time -    @return  :float?              The calculated time point, `None` if none -                                  were found within the specified time span -    ''' -    t = julian_centuries() if t is None else t -    t1 = t2 = t -    v1 = v0 = fun(t) -    while True: -        if abs(t2 - t) > span: -            return None -        t2 += delta -        v2 = fun(t2) -        if (v1 <= requested <= v2) or ((requested >= v1 >= v2) and (requested <= v0)): -            break -        if (v1 >= requested >= v2) or ((requested <= v1 <= v2) and (requested >= v0)): -            break -        t1 = t2 -        v2 = v1 -    for _itr in range(1000): -        tm = (t1 + t2) / 2 -        v1 = fun(t1) -        v2 = fun(t2) -        vm = fun(tm) -        if abs(v1 - v2) < epsilon: -            return tm if abs(vm) < epsilon else None -        if v1 < v2: -            if requested < vm: -                t2 = tm -            else: -                t1 = tm -        elif v1 > v2: -            if requested > vm: -                t2 = tm -            else: -                t1 = tm -    return None - - - -def future_past_equinox(delta, t = None): -    ''' -    Predict the time point of the next or previous equinox -     -    @param   delta:float  Iteration step size, negative for -                          past event, positive for future event -    @param   t:float?     The time in Julian Centuries, `None` -                          for the current time -    @return  :float       The calculated time point -    ''' -    return solar_prediction(delta, 0, solar_declination, t = t) - - -def future_equinox(t = None): -    ''' -    Predict the time point of the next equinox -     -    @param   delta:float  Iteration step size, negative for -                          past event, positive for future event -    @param   t:float?     The time in Julian Centuries, `None` -                          for the current time -    @return  :float       The calculated time point -    ''' -    return future_past_equinox(0.01 / 2000, t) -     - -def past_equinox(t = None): -    ''' -    Predict the time point of the previous equinox -     -    @param   delta:float  Iteration step size, negative for -                          past event, positive for future event -    @param   t:float?     The time in Julian Centuries, `None` -                          for the current time -    @return  :float       The calculated time point -    ''' -    return future_past_equinox(0.01 / -2000, t) - - - -def future_past_solstice(delta, t = None): -    ''' -    Predict the time point of the next or previous solstice -     -    @param   delta:float  Iteration step size, negative for -                          past event, positive for future event -    @param   t:float?     The time in Julian Centuries, `None` -                          for the current time -    @return  :float       The calculated time point -    ''' -    e = 0.00001 -    fun = solar_declination -    dfun = lambda t : (fun(t + e) - fun(t - e)) / 2 -    return solar_prediction(delta, 0, dfun, t = t) - - -def future_solstice(t = None): -    ''' -    Predict the time point of the next solstice -     -    @param   t:float?  The time in Julian Centuries, -                       `None` for the current time -    @return  :float    The calculated time point -    ''' -    return future_past_solstice(0.01 / 2000, t) -     - -def past_solstice(t = None): -    ''' -    Predict the time point of the previous solstice -     -    @param   t:float?  The time in Julian Centuries, -                       `None` for the current time -    @return  :float    The calculated time point -    ''' -    return future_past_solstice(0.01 / -2000, t) - - - -def future_past_elevation(delta, latitude, longitude, elevation, t = None): -    ''' -    Predict the time point of the next or previous time -    the Sun reaches or reached a specific elevation -     -    @param   delta:float      Iteration step size, negative for past -                              event, positive for future event -    @param   latitude:float   The latitude in degrees northwards from -                              the equator, negative for southwards -    @param   longitude:float  The longitude in degrees eastwards from -                              Greenwich, negative for westwards -    @param   elevation:float  The elevation of interest -    @param   t:float?         The time in Julian Centuries, `None` -                              for the current time -    @return  :float?          The calculated time point, `None` if -                              none were found within a year -    ''' -    fun = lambda t : solar_elevation(latitude, longitude, t) -    return solar_prediction(delta, elevation, fun, t = t) - - -def future_elevation(latitude, longitude, elevation, t = None): -    ''' -    Predict the time point of the next time the Sun -    reaches a specific elevation -     -    @param   latitude:float   The latitude in degrees northwards from -                              the equator, negative for southwards -    @param   longitude:float  The longitude in degrees eastwards from -                              Greenwich, negative for westwards -    @param   elevation:float  The elevation of interest -    @param   t:float?         The time in Julian Centuries, `None` -                              for the current time -    @return  :float?          The calculated time point, `None` if -                              none were found within a year -    ''' -    return future_past_elevation(0.01 / 2000, latitude, longitude, elevation, t) -     - -def past_elevation(latitude, longitude, elevation, t = None): -    ''' -    Predict the time point of the previous time the Sun -    reached a specific elevation -     -    @param   latitude:float   The latitude in degrees northwards from -                              the equator, negative for southwards -    @param   longitude:float  The longitude in degrees eastwards from -                              Greenwich, negative for westwards -    @param   elevation:float  The elevation of interest -    @param   t:float?         The time in Julian Centuries, `None` -                              for the current time -    @return  :float?          The calculated time point, `None` if -                              none were found within a year -    ''' -    return future_past_elevation(0.01 / -2000, latitude, longitude, elevation, t) - - - -def future_past_elevation_derivative(delta, latitude, longitude, derivative, t = None): -    ''' -    Predict the time point of the next or previous time the -    Sun reaches or reached a specific elevation derivative -     -    @param   delta:float       Iteration step size, negative for past -                               event, positive for future event -    @param   latitude:float    The latitude in degrees northwards from -                               the equator, negative for southwards -    @param   longitude:float   The longitude in degrees eastwards from -                               Greenwich, negative for westwards -    @param   derivative:float  The elevation derivative value of interest -    @param   t:float?          The time in Julian Centuries, `None` -                               for the current time -    @return  :float?           The calculated time point, `None` if -                               none were found within a year -    ''' -    fun = lambda t : solar_elevation(latitude, longitude, t) -    dfun = lambda t : (fun(t + e) - fun(t - e)) / 2 -    return solar_prediction(delta, derivative, dfun, t = t) - - -def future_elevation_derivative(latitude, longitude, derivative, t = None): -    ''' -    Predict the time point of the next time the -    Sun reaches a specific elevation derivative -     -    @param   latitude:float    The latitude in degrees northwards from -                               the equator, negative for southwards -    @param   longitude:float   The longitude in degrees eastwards from -                               Greenwich, negative for westwards -    @param   derivative:float  The elevation derivative value of interest -    @param   t:float?          The time in Julian Centuries, `None` -                               for the current time -    @return  :float?           The calculated time point, `None` if -                               none were found within a year -    ''' -    return future_past_elevation_derivative(0.01 / 2000, latitude, longitude, derivative, t) -     - -def past_elevation_derivative(latitude, longitude, derivative, t = None): -    ''' -    Predict the time point of the previous time -    the Sun reached a specific elevation derivative -     -    @param   latitude:float    The latitude in degrees northwards from -                               the equator, negative for southwards -    @param   longitude:float   The longitude in degrees eastwards from -                               Greenwich, negative for westwards -    @param   derivative:float  The elevation derivative value of interest -    @param   t:float?          The time in Julian Centuries, `None` -                               for the current time -    @return  :float?           The calculated time point, `None` -                               if none were found within a year -    ''' -    return future_past_elevation_derivative(0.01 / -2000, latitude, longitude, derivative, t) - - - -# TODO: This algorithm is imprecise, gives an incorrent sunrise and I do not fully know its behaviour -def sunrise_equation(latitude, longitude, t = None): -    # Calculate Julian Cycle -    j_cent = julian_centuries() if t is None else t -    j_date = julian_centuries_to_julian_day(j_cent) -    j_cycle = int(j_date - 2451545.0009 - longitude / 360 + 0.5) -     -    # Calculate approximate solar noon and solar man anomaly -    approx_solar_noon = 451545.0009 + longitude / 360 + j_cycle -    solar_mean_anomaly = int(357.5291 + 0.98560028 * (j_cycle - 2451545)) % 360 -     -    # Calculate solar equation of centre -    equation_of_centre  = 1.9148 * sin(1 * solar_mean_anomaly) -    equation_of_centre += 0.0200 * sin(2 * solar_mean_anomaly) -    equation_of_centre += 0.0003 * sin(3 * solar_mean_anomaly) -     -    # Calculate solar ecliptic longitude -    ecliptic_longitude = (solar_mean_anomaly + 102.9372 + equation_of_centre + 180) % 360 -     -    # Calculate solar transit -    solar_transit  = approx_solar_noon + 0.0053 * sin(solar_mean_anomaly) -    solar_transit -= 0.0069 * sin(2 * ecliptic_longitude) -     -    # Calculate solar declination -    declination = asin(sin(ecliptic_longitude) * sin(radians(23.45))) -     -    # Calculate solar hour angle -    hour_angle  = sin(radians(-0.83)) -    hour_angle -= sin(latitude) * sin(declination) -    hour_angle /= cos(latitude) * cos(declination) -    hour_angle = degrees(acos(hour_angle)) -     -    # Calculate time of sunset and sunrise -    sunset  = 2451545.0009 + (hour_angle + longitude) / 360 -    sunset += j_cycle + solar_transit - approx_solar_noon -    sunrise = 2 * solar_transit - sunset -     -    # Convert to Julian Centuries -    return (julian_day_to_julian_centuries(sunset), -            julian_day_to_julian_centuries(sunrise)) - - -  def ptime(t):      '''      Print a time stamp in human-readable local time | 
