#!/usr/bin/env python3
# Copyright © 2014, 2015, 2016, 2017 Mattias Andrée (m@maandree.se)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# This module is responsible for access to the monitors.
import math
from colour import *
from blackbody import *
class Tristate:
'''
Ternary values
@constant NO:int
@constant MAYBE:int
@constant YES:int
'''
NO = 0
MAYBE = 1
YES = 2
class Lifespan:
'''
The lifespan of a gamma adjustment, for cooperative gamma
@constant UNTIL_DEATH:int Remove adjustment when connection to server closes or
when explicitly removed
@constant UNTIL_REMOVAL:int Only remove adjustment once it is requested explicitly
@constant REMOVE:int Request that the adjustment be removed now
'''
UNTIL_DEATH = 0
'''
:int Remove adjustment when connection to server closes or when explicitly removed
'''
UNTIL_REMOVAL = 1
'''
:int Only remove adjustment once it is requested explicitly
'''
REMOVE = 2
'''
:int Request that the adjustment be removed now
'''
class EDID:
'''
Parsed EDID data
@variable manufacturer_id:str? The manufacturer's ID
@variable manufacturer_product_code:int? Manufacturer specific product code
@variable serial_number:int? Serial number
@variable manufacture_week:int? Week of manifacture
@variable manufacture_year:int? Year of manifacture
@variable model_year:int? Year of model
@variable edid_version:(major:int, minor:int)? EDID version
@variable digital_input:bool? Whether the monitor takes digital input
@variable vesa_dfp_1x_tmds_crgb_compatible:bool? Whether the monitor is VESA DFP 1.x TMDS CRGB, 1 pixel
per clock, up to 8 bits per color, MSB aligned compatible
@variable relative_white_level:float? Voltage level for white relative to blank
@variable relative_sync_level:float? Voltage level for separate relative to blank
@variable blank_to_black:bool? Whether blank to black setup is expected
@variable separate_sync_supported:bool? Whether separate synchronisation is supported
@variable composite_sync_supported:bool? Whether composite synchronisation is supported
@variable sync_on_green_supported:bool? Whether synchronisation on green is supported
@variable vsync_pulse_serrated:bool? Whether vertical synchronisation pulse is serrated
@variable width_mm:int? The width of the monitor's viewport in millimetres
@variable height_mm:int? The heiht of the monitor's viewport in millimetres
@variable display_gamma:float? The monitor's gamma
@variable dpms_standby_supported:bool? Whether DPMS standby is supported
@variable dpms_suspend_supported:bool? Whether DPMS suspend is supported
@variable dpms_active_off_supported:bool? Whether DPMS active-off is supported
@variable digital_rgb_444_supported:bool? Whether digital RGB 4:4:4 input is supported
@variable digital_ycrcb_444_supported:bool? Whether digital YCrCb 4:4:4 input is supported
@variable digital_ycrcb_422_supported:bool? Whether digital YCrCb 4:2:2 input is supported
@variable analogue_grey_mono_display:bool? Whether the display is greyscale or monochrome and
takes analogue input
@variable analogue_rgb_display:bool? Whether the display is coloured and uses an RGB
colour space and takes analogue input
@variable analogue_non_rgb_display:bool? Whether the display is coloured and uses a non-RGB
colour model and takes analogue input
@variable srgb:bool? Whether the monitor uses sRGB
@variable preferred_timing_mode:bool? For EDID 1.2-: Whether the preferred timing mode is
specified in descriptor block 1.
For EDID 1.3+: Whether the preferred timing mode
(specified in descriptor block 1) includes native
pixel format and refresh rate.
@variable gtf_supported:bool? Whether Generalized Timing Formula is supported with
default parameter values
@variable red_chroma:(x:float, y:float)? The CIE xyY x and y values of the red primary colour
@variable green_chroma:(x:float, y:float)? The CIE xyY x and y values of the green primary colour
@variable blue_chroma:(x:float, y:float)? The CIE xyY x and y values of the blue primary colour
@variable white_chroma:(x:float, y:float)? The CIE xyY x and y values of the white point
'''
def __init__(self, edid):
'''
Constructor
@param edid:str The EDID in upper case hexadecimal representation
'''
self.manufacturer_id = None
self.manufacturer_product_code = None
self.serial_number = None
self.manufacture_week = None
self.manufacture_year = None
self.model_year = None
self.edid_version = None
self.digital_input = None
self.vesa_dfp_1x_tmds_crgb_compatible = None
self.relative_white_level = None
self.relative_sync_level = None
self.blank_to_black = None
self.separate_sync_supported = None
self.composite_sync_supported = None
self.sync_on_green_supported = None
self.vsync_pulse_serrated = None
self.width_mm = None
self.height_mm = None
self.display_gamma = None
self.dpms_standby_supported = None
self.dpms_suspend_supported = None
self.dpms_active_off_supported = None
self.digital_rgb_444_supported = None
self.digital_ycrcb_444_supported = None
self.digital_ycrcb_422_supported = None
self.analogue_grey_mono_display = None
self.analogue_rgb_display = None
self.analogue_non_rgb_display = None
self.srgb = None
self.preferred_timing_mode = None
self.gtf_supported = None
self.red_chroma = None
self.green_chroma = None
self.blue_chroma = None
self.white_chroma = None
## FOR LEGACY {
self.__gamma_correction = ...
## }
if edid[:len('00FFFFFFFFFFFF00')] == '00FFFFFFFFFFFF00' or len(edid) % 2 == 1:
return
edid = [int(edid[i * 2 : i * 2 + 2], 16) for i in range(len(edid) // 2)]
if len(edid) < 128 or sum(edid[:128]) % 256 != 0:
return
self.manufacturer_id = [(edid[8] >> 2) & 0x0F, (edid[9] >> 4) | (edid[8] & 1) << 4, edid[9] & 0x0F]
self.manufacturer_id = ''.join(chr(ord('@') + c) for c in self.manufacturer_id)
self.manufacturer_product_code = edid[10] | (edid[11] << 8)
self.serial_number = edid[12] | (edid[13] << 8) | (edid[14] << 16) | (edid[15] << 24)
self.manufacture_week = edid[16] # inconsistent between manufacturers
self.manufacture_year = 1990 + edid[17]
if self.manufacture_week == 255:
self.model_year = self.manufacture_year
self.manufacture_week = None
self.manufacture_year = None
self.edid_version = (edid[18], edid[19])
self.digital_input = (edid[20] & 0x80) == 0x80
if self.digital_input:
self.vesa_dfp_1x_tmds_crgb_compatible = (edid[20] & 1) == 1
else:
self.relative_white_level = (0.7, 0.714, 1, 0.7)[(edid >> 5) & 3]
self.relative_sync_level = (-0.3, -0.286, -0.4, 0)[(edid >> 5) & 3]
self.blank_to_black = (edid[20] & 16) == 16
self.separate_sync_supported = (edid[20] & 8) == 8
self.composite_sync_supported = (edid[20] & 4) == 4
self.sync_on_green_supported = (edid[20] & 2) == 2
self.vsync_pulse_serrated = (edid[20] & 1) == 1
self.width_mm = edid[21] * 10
self.height_mm = edid[22] * 10
if edid[21] == 0 or edid[22] == 0:
self.width_mm = self.height_mm = None
self.display_gamma = None if edid[23] == 255 else edid[23] / 100 + 1
self.dpms_standby_supported = (edid[24] & 128) == 128
self.dpms_suspend_supported = (edid[24] & 64) == 64
self.dpms_active_off_supported = (edid[24] & 32) == 32
if self.digital_input:
self.digital_rgb_444_supported = True
self.digital_ycrcb_444_supported = (edid[24] & 8) == 8
self.digital_ycrcb_422_supported = (edid[24] & 16) == 16
self.analogue_grey_mono_display = False
self.analogue_rgb_display = False
self.analogue_non_rgb_display = False
else:
self.digital_rgb_444_supported = False
self.digital_ycrcb_444_supported = False
self.digital_ycrcb_422_supported = False
self.analogue_grey_mono_display = ((edid[24] >> 3) & 3) == 0
self.analogue_rgb_display = ((edid[24] >> 3) & 3) == 1
self.analogue_non_rgb_display = ((edid[24] >> 3) & 3) == 2
self.srgb = (edid[24] & 4) == 4
self.preferred_timing_mode = (edid[24] & 2) == 2
self.gtf_supported = (edid[24] & 1) == 1
rx = (edid[27] << 2) | ((edid[25] >> 6) & 3)
ry = (edid[28] << 2) | ((edid[25] >> 4) & 3)
gx = (edid[29] << 2) | ((edid[25] >> 2) & 3)
gy = (edid[30] << 2) | ((edid[25] >> 0) & 3)
bx = (edid[31] << 2) | ((edid[26] >> 6) & 3)
by = (edid[32] << 2) | ((edid[26] >> 4) & 3)
wx = (edid[33] << 2) | ((edid[26] >> 2) & 3)
wy = (edid[34] << 2) | ((edid[26] >> 0) & 3)
self.red_chroma = (rx / 1024, ry / 1024)
self.green_chroma = (gx / 1024, gy / 1024)
self.blue_chroma = (bx / 1024, by / 1024)
self.white_chroma = (wx / 1024, wy / 1024)
# There are also mode lines and maybe extensions, but yeah...
## FOR LEGACY {
@property
def widthmm(self):
if not EDID.warned_widthmm:
EDID.warned_widthmm = True
print('EDID.widthmm is deprecated, use EDID.width_mm instead', file = sys.stderr)
return self.width_mm
@widthmm.setter
def widthmm(self, value):
if not EDID.warned_widthmm:
EDID.warned_widthmm = True
print('EDID.widthmm is deprecated, use EDID.width_mm instead', file = sys.stderr)
self.width_mm = value
@property
def heightmm(self):
if not EDID.warned_heightmm:
EDID.warned_heightmm = True
print('EDID.heightmm is deprecated, use EDID.height_mm instead', file = sys.stderr)
return self.height_mm
@heightmm.setter
def heightmm(self, value):
if not EDID.warned_heightmm:
EDID.warned_heightmm = True
print('EDID.heightmm is deprecated, use EDID.height_mm instead', file = sys.stderr)
self.height_mm = value
@property
def gamma(self):
if not EDID.warned_gamma:
EDID.warned_gamma = True
print('EDID.gamma is deprecated, use EDID.display_gamma instead', file = sys.stderr)
return self.display_gamma
@gamma.setter
def gamma(self, value):
if not EDID.warned_gamma:
EDID.warned_gamma = True
print('EDID.gamma is deprecated, use EDID.display_gamma instead', file = sys.stderr)
self.display_gamma = value
@property
def gamma_correction(self):
if not EDID.warned_gamma_correction:
EDID.warned_gamma_correction = True
print('EDID.gamma_correction is deprecated', file = sys.stderr)
if self.__gamma_correction is ...:
if self.display_gamma is None:
self.__gamma_correction = None
else:
self.__gamma_correction = self.display_gamma / 2.2
return self.__gamma_correction
@gamma_correction.setter
def gamma_correction(self, value):
if not EDID.warned_gamma_correction:
EDID.warned_gamma_correction = True
print('EDID.gamma_correction is deprecated', file = sys.stderr)
self.__gamma_correction = value
EDID.warned_widthmm = False
EDID.warned_heightmm = False
EDID.warned_gamma = False
EDID.warned_gamma_correction = False
## }
class MultiCRTC:
'''
A group of CRTC:s organised for efficient gamma ramp adjustments
'''
def __init__(self, crtcs, interpolation = None):
'''
Constructor
@param crtc:iter<CTRC> The CRTC:s
@param interpolation:(r:list<float>, g:list<float>, b:list<float>)→
(r:list<float>, g:list<float>, b:list<float>)?
Function used to interpolate gamma ramps to new dimentions,
`None` for the default interpolator, which is intentionally
unspecified
'''
self.interpolation = interpolation
self.layers = []
for crtc in crtcs:
self.add(crtc)
def add(self, crtc):
'''
Add a CRTC
@param crtc:CRTC The CRTC to add
'''
found = None
for layer in self.layers:
ref = layer[0][0][0]
if crtc.red_gamma_size == ref.red_gamma_size:
if crtc.green_gamma_size == ref.green_gamma_size:
if crtc.blue_gamma_size == ref.blue_gamma_size:
found = layer
break
if not found:
found = []
self.layers.append(found)
subfound = None
for sublayer in found:
ref = sublayer[0][0]
if crtc.gamma_depth == ref.gamma_depth:
subfound = sublayer
break
if not subfound:
subfound = []
found.append(subfound)
subsubfound = None
for subsublayer in subfound:
ref = subsublayer[0]
if crtc.backend == ref.backend:
subsubfound = subsublayer
break
if not subsubfound:
subsubfound = []
subfound.append(subsubfound)
subsubfound.append(crtc)
def make_ramps(self, depth = -2):
'''
Create a gamma-ramp trio where each ramp is as large as the
largest ramp, of the samp colour, of the CRTCs in the group
@param depth:int The gamma depth, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values, and
-2 for double-precision floating-point values
@return :Ramps A new gamma-ramp trio suited for the group
'''
size = [1, 1, 1]
for layer in self.layers:
crtc = layer[0][0][0]
size[0] = max(size[0], crtc.red_gamma_size)
size[1] = max(size[1], crtc.green_gamma_size)
size[2] = max(size[2], crtc.blue_gamma_size)
return Ramps(None, depth = depth, size = size)
def set_gamma(self, ramps, priority = None, rule = None, lifespan = 1):
'''
Set the gamma ramps on all CRTC:s in the group
@param ramps:Ramps The gamma ramps
@param priority:int? The priority of the adjustment, `None` for the default.
Must be `None` (default) if cooperative gamma is not supported.
@param rule:str? The rule of the adjustment, `None` for the default.
The rule is the last part of the adjustment's identifier,
if this is unique within the program, it should be universally
unique unless another program is intentionally make it not so.
Must be `None` (default) if cooperative gamma is not supported.
@param lifespan:int The lifespan of the algorithm: `Lifespan.UNTIL_DEATH`,
`Lifespan.UNTIL_REMOVAL` (default), or `Lifespan.REMOVE`
'''
if lifespan == Lifespan.REMOVE:
for layer in self.layers:
for sublayer in layer:
for subsublayer in sublayer:
for crtc in subsublayer:
crtc.set_gamma(None, priority, rule, lifespan)
return
for layer in self.layers:
ref = layer[0][0][0]
refsize = (ref.red_gamma_size, ref.green_gamma_size, ref.blue_gamma_size)
if refsize == (len(ramps.red), len(ramps.green), len(ramps.blue)):
ramps_size = ramps
else:
ramps_size = Ramps.copy(ramps, refcrtc.depth, refsize)
for sublayer in layer:
ref = sublayer[0][0]
refdepth = ref.gamma_depth
if refdepth == ramps_size.depth:
ramps_depth = ramps_size
else:
ramps_depth = Ramps.copy(ramps, refdepth, refsize)
for subsublayer in sublayer:
ramps_backend = ramps_depth
for crtc in subsublayer:
ramps_backend = crtc.set_gamma(ramps_backend, priority, rule, lifespan)
class CRTC:
'''
A CRTC
@function restore:(self)?→void Restore the CLUT:s to the (configured) system
defaults, `None` if not supported
@variable screen:Screen The screen
@variable edid:str? The EDID in upper case hexadecimal representation
@variable red_gamma_size:int? The number of stops in the red gamma ramp
@variable green_gamma_size:int? The number of stops in the green gamma ramp
@variable blue_gamma_size:int? The number of stops in the blue gamma ramp
@variable gamma_depth:int? The gamma depth, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values, and
-2 for double-precision floating-point values
@variable gamma_support:int? 0 (`Tristate.NO`) if gamma adjustments are not supported,
1 (`Tristate.MAYBE`) if gamma adjustments support is unknown,
and 2 (`Tristate.YES`) if gamma adjustments are supported,
@variable subpixel_order:str? The subpixel order:
"RGB" for red at left, green in centre, and blue at right;
"BGR" for red at right, green in centre, and blue at left;
"vRGB" for red at top, green in middle, and blue at bottom;
"vBGR" for red at bottom, green in middle, and blue at top;
and "None" for no subpixel order (e.g. on most old to
semi-old CRT:s)
@variable active:bool? Whether the monitor is active
@variable connector_name:str? The connector name
@variable connector_type:str? The connector type
@variable ramps Gamma ramps, you should not use it directly (INTERNAL)
@variable cooperative:bool Whether cooperative gamma is supported
@variable default_rule:str The default cooperative gamma rule (part of the class (filter identifier))
@variable default_priority:int The default cooperative gamma priority (filter order)
You will also find the following variables in `.edid_data`, however, here they are as
specified by the display server rather than as specified in the EDID. This means that
they can be been corrected by the user or the display server. On the other hand, they
can also be incorrect. For exampel, under X.org `.width_mm` and `.height_mm` are
calculated from assumed properties and can be completely, and horribly, wrong.
@variable manufacturer_id:str? The manufacturer's ID
@variable manufacturer_product_code:int? Manufacturer specific product code
@variable serial_number:int? Serial number
@variable manufacture_week:int? Week of manifacture
@variable manufacture_year:int? Year of manifacture
@variable model_year:int? Year of model
@variable edid_version:(major:int, minor:int)? EDID version
@variable digital_input:bool? Whether the monitor takes digital input
@variable vesa_dfp_1x_tmds_crgb_compatible:bool? Whether the monitor is VESA DFP 1.x TMDS CRGB, 1 pixel
per clock, up to 8 bits per color, MSB aligned compatible
@variable relative_white_level:float? Voltage level for white relative to blank
@variable relative_sync_level:float? Voltage level for separate relative to blank
@variable blank_to_black:bool? Whether blank to black setup is expected
@variable separate_sync_supported:bool? Whether separate synchronisation is supported
@variable composite_sync_supported:bool? Whether composite synchronisation is supported
@variable sync_on_green_supported:bool? Whether synchronisation on green is supported
@variable vsync_pulse_serrated:bool? Whether vertical synchronisation pulse is serrated
@variable width_mm:int? The width of the monitor's viewport in millimetres
@variable height_mm:int? The heiht of the monitor's viewport in millimetres
@variable display_gamma:float? The monitor's gamma
@variable dpms_standby_supported:bool? Whether DPMS standby is supported
@variable dpms_suspend_supported:bool? Whether DPMS suspend is supported
@variable dpms_active_off_supported:bool? Whether DPMS active-off is supported
@variable digital_rgb_444_supported:bool? Whether digital RGB 4:4:4 input is supported
@variable digital_ycrcb_444_supported:bool? Whether digital YCrCb 4:4:4 input is supported
@variable digital_ycrcb_422_supported:bool? Whether digital YCrCb 4:2:2 input is supported
@variable analogue_grey_mono_display:bool? Whether the display is greyscale or monochrome and
takes analogue input
@variable analogue_rgb_display:bool? Whether the display is coloured and uses an RGB
colour space and takes analogue input
@variable analogue_non_rgb_display:bool? Whether the display is coloured and uses a non-RGB
colour model and takes analogue input
@variable srgb:bool? Whether the monitor uses sRGB
@variable preferred_timing_mode:bool? For EDID 1.2-: Whether the preferred timing mode is
specified in descriptor block 1.
For EDID 1.3+: Whether the preferred timing mode
(specified in descriptor block 1) includes native
pixel format and refresh rate.
@variable gtf_supported:bool? Whether Generalized Timing Formula is supported with
default parameter values
@variable red_chroma:(x:float, y:float)? The CIE xyY x and y values of the red primary colour
@variable green_chroma:(x:float, y:float)? The CIE xyY x and y values of the green primary colour
@variable blue_chroma:(x:float, y:float)? The CIE xyY x and y values of the blue primary colour
@variable white_chroma:(x:float, y:float)? The CIE xyY x and y values of the white point
'''
def __init__(self):
'''
Constructor
'''
self.__edid_data = ...
self.edid = None
self.red_gamma_size = None
self.green_gamma_size = None
self.blue_gamma_size = None
self.gamma_depth = None
self.gamma_support = None
self.subpixel_order = None
self.active = None
self.connector_name = None
self.connector_type = None
self.ramps = None
self.cooperative = False
self.default_rule = 'standard'
self.default_priority = 1 << 59
# Everything that is in the EDID class, in
# case it is specified by the display server
# and potentially configured by the user.
self.manufacturer_id = None
self.manufacturer_product_code = None
self.serial_number = None
self.manufacture_week = None
self.manufacture_year = None
self.model_year = None
self.edid_version = None
self.digital_input = None
self.vesa_dfp_1x_tmds_crgb_compatible = None
self.relative_white_level = None
self.relative_sync_level = None
self.blank_to_black = None
self.separate_sync_supported = None
self.composite_sync_supported = None
self.sync_on_green_supported = None
self.vsync_pulse_serrated = None
self.width_mm = None
self.height_mm = None
self.display_gamma = None
self.dpms_standby_supported = None
self.dpms_suspend_supported = None
self.dpms_active_off_supported = None
self.digital_rgb_444_supported = None
self.digital_ycrcb_444_supported = None
self.digital_ycrcb_422_supported = None
self.analogue_grey_mono_display = None
self.analogue_rgb_display = None
self.analogue_non_rgb_display = None
self.srgb = None
self.preferred_timing_mode = None
self.gtf_supported = None
self.red_chroma = None
self.green_chroma = None
self.blue_chroma = None
self.white_chroma = None
def make_ramps(self, depth = None):
'''
Create gamma ramps with the same size as the CRTC expects
@param depth:int? The gamma depth, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values,
-2 for double-precision floating-point values, and
`None` for the gamma depth the CRTC expects
@return :Ramps The created gamma ramps
'''
return Ramps(self, depth = depth)
@property
def edid_data(self):
'''
Get parsed EDID information for the CRTC
@return :EDID Parsed EDID information
'''
if self.__edid_data is ...:
self.__edid_data = None if self.edid is None else EDID(self.edid)
return self.__edid_data
class Screen:
'''
A screen or graphics card
@function restore:(self)?→void Restore the CLUT:s to the (configured) system defaults,
`None` if not supported
@variable display:Display The display
@variable crtcs:list<LibgammaCRTC> The CRTC:s in the screen
'''
def __len__(self):
'''
Get the number of CRTC:s in the screen
@return :int The number of CRTC:s in the screen
'''
return len(self.crtcs)
def __getitem__(self, indices):
'''
Get CRTC:s in the screen
@param indices:int|slice The index or index range of CRTC:s to return
@return :CRTC|list<CRTC> The CRTC or CRTC:s with the specified indices
'''
return self.crtcs[indices]
def __iter__(self):
'''
Iterator of the screen's CRTC:s
@yield :CRTC CRTC in the screen
'''
for value in self[:]:
yield value
class Display:
'''
A display
@function restore:(self)?→void Restore the CLUT:s to the (configured) system defaults,
`None` if not supported
@variable screens:list<LibgammaScreen> The screens in the display
@variable crtcs:list<LibgammaCRTC> The CRTC:s in the display
@variable cooperative:bool Whether the adjustment method supports cooperative gamma
'''
def __len__(self):
'''
Get the number of screens in the display
@return :int The number of screens in the display
'''
return len(self.crtcs)
def __getitem__(self, indices):
'''
Get screens in the display
@param indices:int|slice The index or index range of screens to return
@return :CRTC|list<CRTC> The screen or screens with the specified indices
'''
return self.crtcs[indices]
def __iter__(self):
'''
Iterator of the display's screens
@yield :Screen Screen in the display
'''
for value in self[:]:
yield value
class Ramps:
'''
Gamma ramps
@variable red:list<float> The gamma ramp of the red channel
@variable green:list<float> The gamma ramp of the green channel
@variable blue:list<float> The gamma ramp of the blue channel
@variable depth:int The gamma depth, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values, and
-2 for double-precision floating-point values
@variable maximum:float The largest stop value
'''
def __init__(self, crtc, depth = None, size = None):
'''
Constructor
@param crtc:CRTC? The CRTC the ramps should match, may
only be `None` if neither `depth` nor
`size` is `None`
@param depth:int? The gamma depth, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values,
-2 for double-precision floating-point values, and
`None` for the gamma depth the CRTC expects
@param size:int|(red:int, green:int, blue:int)?
The size of the ramps, either an integer of the size that
is applied to all three channels, three integers with
the size of each channel, or `None` for the sizes the
CRTC expects
'''
if depth is None:
depth = crtc.depth
if size is not None and isinstance(size, int):
size = (size, size, size)
self.depth = depth
self.maximum = 1 if depth < 0 else (1 << depth) - 1
if depth > 0:
def make_ramp(depth, size):
return [int(x * self.maximum / (size - 1) + 0.5) for x in range(size)]
else:
def make_ramp(depth, size):
return [x / (size - 1) for x in range(size)]
self.red = make_ramp(self.depth, crtc.red_gamma_size if size is None else size[0])
self.green = make_ramp(self.depth, crtc.green_gamma_size if size is None else size[1])
self.blue = make_ramp(self.depth, crtc.blue_gamma_size if size is None else size[2])
def copy(self, depth = None, size = None, interpolation = None):
'''
Create a copy, optionally with a new depth or size
@param depth:int? The gamma depth in the copy, 8 for unsigned 8-bit integers,
16 for unsigned 16-bit integers, 32 for unsigned
32-bit integers, 64 for unsigned 64-bit integers,
-1 for single-precision floating-point values,
-2 for double-precision floating-point values, and
`None` for the gamma depth of the original (`self`)
@param size:int|(red:int, green:int, blue:int)?
The size of the copy, either an integer of the size that
is applied to all three channels, three integers with
the size of each channel, or `None` for the sizes of
the original
@param interpolation:(red:list<float>, green:list<float>, blue:list<float>)?→
(red:list<float>, green:list<float>, blue:list<float>)
Function used for interpolation used for resizing the
ramps. `None` for the default, which is intentionally
unspecified.
@return :Ramps The copy
'''
if size is None:
size = (len(self.red), len(self.green), len(self.blue))
r = Ramps(None, self.depth if depth is None else depth, size)
ramps = (self.red, self.green, self.blue)
if len(self.red) == len(r.red) and len(self.green) == len(r.green) and len(self.blue) == len(r.blue):
pass
elif interpolation is None:
import interpolation as interpol
ramps = interpol.linearly_interpolate_ramp(*ramps, size = size)
else:
ramps = interpolation(*ramps, size = size)
r.red[:] = ramps[0]
r.green[:] = ramps[1]
r.blue[:] = ramps[2]
if r.maximum != self.maximum:
for ramp in (r.red, r.green, r.blue):
for i in range(len(ramp)):
ramp[i] = ramp[i] * r.maximum / self.maximum
return r
def __str__(self, compact = False):
'''
Create a string of the ramps that is useful for debugging
@param compact:bool Whether to apply run-length compression when suitable
@return :str A printable string
'''
if not compact:
return '%s\n%s\n%s' % (repr(red), repr(green), repr(blue))
rgb = ([], [], [])
for r, w in zip((self.red, self.green, self.blue), rgb):
last, count = None, 0
for value in r:
if self.depth > 0:
value = int(value + 0.5)
if value == last:
count += 1
else:
if last is not None:
if count > 1:
w.append(repr(last))
else:
w.append('%s {%i}' % (repr(last), count))
last = value
count = 1
if last is not None:
if count > 1:
w.append(repr(last))
else:
w.append('%s {%i}' % (repr(last), count))
return '[%s]\n[%s]\n[%s]' % (', '.join(rgb[0]), ', '.join(rgb[1]), ', '.join(rgb[2]))
def __bool(self, r, g, b):
if g is ...: g = r
if b is ...: b = g
ret = []
if r: ret.append(self.red)
if g: ret.append(self.green)
if b: ret.append(self.blue)
return ret
def __datum(self, r, g, b):
if g is ...: g = r
if b is ...: b = g
ret = []
if r is not None: ret.append((self.red, r))
if g is not None: ret.append((self.green, g))
if b is not None: ret.append((self.blue, b))
return ret
def temperature(self, temperature, algorithm):
'''
Change colour temperature according to the CIE illuminant series D using CIE sRBG
@param temperature:float|str The blackbody temperature in kelvins, or a name
@param algorithm:(float)→(float, float, float) Algorithm for calculating a white point, for example `cmf_10deg`
'''
self.rgb_temperature(temperature, algorithm)
def rgb_temperature(self, temperature, algorithm):
'''
Change colour temperature according to the CIE illuminant series D using CIE sRBG
@param temperature:float|str The blackbody temperature in kelvins, or a name
@param algorithm:(float)→(float, float, float) Algorithm for calculating a white point, for example `cmf_10deg`
'''
# Resolve colour temperature name
temperature = kelvins(temperature)
# Do nothing if the temperature is neutral
if temperature == 6500: return
# Otherwise manipulate the colour curves
self.rgb_brightness(*(algorithm(temperature)))
def cie_temperature(self, temperature, algorithm):
'''
Change colour temperature according to the CIE illuminant series D using CIE xyY
@param temperature:float|str The blackbody temperature in kelvins, or a name
@param algorithm:(float)→(float, float, float) Algorithm for calculating a white point, for example `cmf_10deg`
'''
# Resolve colour temperature name
temperature = kelvins(temperature)
# Do nothing if the temperature is neutral
if temperature == 6500: return
# Otherwise manipulate the colour curves
self.cie_brightness(*(algorithm(temperature)))
def rgb_contrast(self, r, g = ..., b = ...):
'''
Apply contrast correction on the colour curves using sRGB
In this context, contrast is a measure of difference between the whitepoint and blackpoint,
if the difference is 0 than they are both grey
@param r:float? The contrast parameter for the red curve
@param g:float|...? The contrast parameter for the green curve, defaults to `r` if `...`
@param b:float|...? The contrast parameter for the blue curve, defaults to `g` if `...`
'''
half = self.maximum / 2
for (curve, level) in self.__value(r, g, b):
if not level == 1.0:
curve[:] = [(y - half) * level + half for y in curve]
def cie_contrast(self, r, g = ..., b = ...):
'''
Apply contrast correction on the colour curves using CIE xyY
In this context, contrast is a measure of difference between the whitepoint and blackpoint,
if the difference is 0 than they are both grey
@param r:float? The contrast parameter for the red curve
@param g:float|...? The contrast parameter for the green curve, defaults to `r` if `...`
@param b:float|...? The contrast parameter for the blue curve, defaults to `g` if `...`
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Check if we can reduce the overhead, we can if the adjustments are identical
same = r == g == b
# Check we need to do any adjustment
if (not same) or (not r == 1.0):
if same:
if r is None:
return
# Manipulate all curves in one step if their adjustments are identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate illumination and convert back to sRGB
(r_, g_, b_) = ciexyy_to_srgb(x, y, (Y - 0.5) * r + 0.5)
if r: self.red[i] = r_ * self.maximum
if g: self.green[i] = g_ * self.maximum
if b: self.blue[i] = b_ * self.maximum
else:
# Manipulate all curves individually if their adjustments are not identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate illumination and convert back to sRGB
if r: self.red[i] = ciexyy_to_srgb(x, y, (Y - 0.5) * r + 0.5)[0] * self.maximum
if g: self.green[i] = ciexyy_to_srgb(x, y, (Y - 0.5) * g + 0.5)[1] * self.maximum
if b: self.blue[i] = ciexyy_to_srgb(x, y, (Y - 0.5) * b + 0.5)[2] * self.maximum
def rgb_brightness(self, r, g = ..., b = ...):
'''
Apply brightness correction on the colour curves using sRGB
In this context, brightness is a measure of the whiteness of the whitepoint
@param r:float? The brightness parameter for the red curve
@param g:float|...? The brightness parameter for the green curve, defaults to `r` if `...`
@param b:float|...? The brightness parameter for the blue curve, defaults to `g` if `...`
'''
for (curve, level) in curves(r, g, b):
if not level == 1.0:
curve[:] = [y * level for y in curve]
def cie_brightness(self, r, g = ..., b = ...):
'''
Apply brightness correction on the colour curves using CIE xyY
In this context, brightness is a measure of the whiteness of the whitepoint
@param r:float? The brightness parameter for the red curve
@param g:float|...? The brightness parameter for the green curve, defaults to `r` if `...`
@param b:float|...? The brightness parameter for the blue curve, defaults to `g` if `...`
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Check if we can reduce the overhead, we can if the adjustments are identical
same = r == g == b
# Check we need to do any adjustment
if (not same) or (not r == 1.0):
if same:
if r is None:
return
# Manipulate all curves in one step if their adjustments are identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
(r_, g_, b_) = ciexyy_to_srgb(x, y, Y * r)
if r: self.red[i] = r_ * self.maximum
if g: self.green[i] = g_ * self.maximum
if b: self.blue[i] = b_ * self.maximum
else:
# Manipulate all curves individually if their adjustments are not identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate illumination and convert back to sRGB
if r: self.red[i] = ciexyy_to_srgb(x, y, Y * r)[0] * self.maximum
if g: self.green[i] = ciexyy_to_srgb(x, y, Y * g)[1] * self.maximum
if b: self.blue[i] = ciexyy_to_srgb(x, y, Y * b)[2] * self.maximum
def linearise(self, r = True, g = ..., b = ...):
'''
Convert the curves from formatted in standard RGB to linear RGB
@param r:bool Whether to convert the red colour curve
@param g:bool|... Whether to convert the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to convert the blue colour curve, defaults to `g` if `...`
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Convert colour space
if not r and not g and not b:
return
for i in range(i_size):
(r_, g_, b_) = standard_to_linear(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
if r: self.red[i] = r_ * self.maximum
if g: self.green[i] = g_ * self.maximum
if b: self.blue[i] = b_ * self.maximum
def standardise(self, r = True, g = ..., b = ...):
'''
Convert the curves from formatted in linear RGB to standard RGB
@param r:bool Whether to convert the red colour curve
@param g:bool|... Whether to convert the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to convert the blue colour curve, defaults to `g` if `...`
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Convert colour space
if not r and not g and not b:
return
for i in range(i_size):
(r_, g_, b_) = linear_to_standard(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
if r: self.red[i] = r_ * self.maximum
if g: self.green[i] = g_ * self.maximum
if b: self.blue[i] = b_ * self.maximum
def gamma(self, r, g = ..., b = ...):
'''
Apply gamma correction on the colour curves
@param r:float? The gamma parameter for the red colour curve
@param g:float|...? The gamma parameter for the green colour curve, defaults to `r` if `...`
@param b:float|...? The gamma parameter for the blue colour curve, defaults to `g` if `...`
'''
for (curve, level) in self.__value(r, g, b):
if not level == 1.0:
curve[:] = [(y / self.maximum) ** (1 / level) * self.maximum for y in curve]
def negative(self, r = True, g = ..., b = ...):
'''
Reverse the colour curves (negative image with gamma preservation)
@param r:bool Whether to invert the red colour curve
@param g:bool|... Whether to invert the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to invert the blue colour curve, defaults to `g` if `...`
'''
for curve in self.__bool(r, g, b):
curve[:] = reversed(curve)
def rgb_invert(self, r = True, g = ..., b = ...):
'''
Invert the colour curves (negative image with gamma invertion), using sRGB
@param r:bool Whether to invert the red colour curve
@param g:bool|... Whether to invert the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to invert the blue colour curve, defaults to `g` if `...`
'''
for curve in self.__bool(r, g, b):
curve[:] = [self.maximum - y for y in curve]
def cie_invert(self, r = True, g = ..., b = ...):
'''
Invert the colour curves (negative image with gamma invertion), using CIE xyY
@param r:bool Whether to invert the red colour curve
@param g:bool|... Whether to invert the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to invert the blue colour curve, defaults to `g` if `...`
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Manipulate the colour curves if any curve should be manipulated
if r or g or b:
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Invert illumination and convert to back sRGB
(r_, g_, b_) = ciexyy_to_srgb(x, y, 1 - Y)
# Apply the new values on the selected channels
if r: self.red[i] = r_ * self.maximum
if g: self.green[i] = g_ * self.maximum
if b: self.blue[i] = b_ * self.maximum
def sigmoid(self, r, g = ..., b = ...):
'''
Apply S-curve correction on the colour curves.
This is intended for fine tuning LCD monitors,
4.5 is good value start start testing at.
You would probably like to use rgb_limits before
this to adjust the black point as that is the
only way to adjust the black point on many LCD
monitors.
@param r:float? The sigmoid parameter for the red colour curve
@param g:float|...? The sigmoid parameter for the green colour curve, defaults to `r` if `...`
@param b:float|...? The sigmoid parameter for the blue colour curve, defaults to `g` if `...`
'''
for (curve, level) in self.__value(r, g, b):
for i in range(i_size):
try:
curve[i] = (0.5 - math.log(self.maximum / curve[i] - 1) / level) * self.maximum
except:
# Corner cases:
# curve[i] = 0 → 0 -- Division by zero
# curve[i] = self.maximum → self.maximum -- Logarithm of zero
pass
def rgb_limits(self, r_min, r_max, g_min = ..., g_max = ..., b_min = ..., b_max = ...):
'''
Changes the black point and the white point, using sRGB
@param r_min:float The red component value of the black point
@param r_max:float The red component value of the white point
@param g_min:float|... The green component value of the black point, defaults to `r_min`
@param g_max:float|... The green component value of the white point, defaults to `r_max`
@param b_min:float|... The blue component value of the black point, defaults to `g_min`
@param b_max:float|... The blue component value of the white point, defaults to `g_max`
'''
# Handle overloading
if g_min is ...: g_min = r_min
if g_max is ...: g_max = r_max
if b_min is ...: b_min = g_min
if b_max is ...: b_max = g_max
# Manipulate the colour curves
for (curve, (level_min, level_max)) in self.__values((r_min, r_max), (g_min, g_max), (b_min, b_max)):
# But not if the adjustments are neutral
if (level_min != 0) or (level_max != self.maximum):
curve[:] = [y * (level_max - level_min) + level_min for y in curve]
def cie_limits(self, r_min, r_max, g_min = ..., g_max = ..., b_min = ..., b_max = ...):
'''
Changes the black point and the white point, using CIE xyY
@param r_min:float The red component value of the black point
@param r_max:float The red component value of the white point
@param g_min:float|... The green component value of the black point, defaults to `r_min`
@param g_max:float|... The green component value of the white point, defaults to `r_max`
@param b_min:float|... The blue component value of the black point, defaults to `g_min`
@param b_max:float|... The blue component value of the white point, defaults to `g_max`
'''
# Handle overloading
if g_min is ...: g_min = r_min
if g_max is ...: g_max = r_max
if b_min is ...: b_min = g_min
if b_max is ...: b_max = g_max
# Check if we can reduce the overhead, we can if the adjustments are identical
same = (r_min == g_min == b_min) and (r_max == g_max == b_max)
# Check we need to do any adjustment
if (not same) or (not r_min == 0) or (not r_max == self.maximum):
if same:
# Manipulate all curves in one step if their adjustments are identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate illumination
Y = Y * (r_max - r_min) + r_min
# Convert back to sRGB
(r_, g_, b_) = ciexyy_to_srgb(x, y, Y)
self.red[i] = r_ * self.maximum
self.green[i] = g_ * self.maximum
self.blue[i] = b_ * self.maximum
else:
# Manipulate all curves individually if their adjustments are not identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate illumination and convert back to sRGB
self.red[i] = ciexyy_to_srgb(x, y, Y * (r_max - r_min) + r_min)[0] * self.maximum
self.green[i] = ciexyy_to_srgb(x, y, Y * (g_max - g_min) + g_min)[1] * self.maximum
self.blue[i] = ciexyy_to_srgb(x, y, Y * (b_max - b_min) + b_min)[2] * self.maximum
def manipulate(self, r, g = ..., b = ...):
'''
Manipulate the colour curves using a (lambda) function
@param r:(float)?→float Function to manipulate the red colour curve
@param g:(float)?→float|... Function to manipulate the green colour curve, defaults to `r` if `...`
@param b:(float)?→float|... Function to manipulate the blue colour curve, defaults to `g` if `...`
`None` means that nothing is done for that subpixel
The lambda functions thats a colour value and maps it to a new colour value.
For example, if the red value 0.5 is already mapped to 0.25, then if the function
maps 0.25 to 0.5, the red value 0.5 will revert back to being mapped to 0.5.
'''
for (curve, f) in self.__values(r, g, b):
curve[:] = [f(y) for y in curve]
def cie_manipulate(self, r, g = ..., b = ...):
'''
Manipulate the colour curves using a (lambda) function on the CIE xyY colour space
@param r:(float)?→float Function to manipulate the red colour curve
@param g:(float)?→float|... Function to manipulate the green colour curve, defaults to `r` if `...`
@param b:(float)?→float|... Function to manipulate the blue colour curve, defaults to `g` if `...`
`None` means that nothing is done for that subpixel
The lambda functions thats a colour value and maps it to a new illumination value.
For example, if the value 0.5 is already mapped to 0.25, then if the function
maps 0.25 to 0.5, the value 0.5 will revert back to being mapped to 0.5.
'''
# Handle overloading
if g is ...: g = r
if b is ...: b = g
# Check if we can reduce the overhead, we can if the adjustments are identical
same = (r is g) and (g is b)
if same:
if r is None:
return
# Manipulate all curves in one step if their adjustments are identical
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate and convert by to sRGB
(r_, g_, b_) = ciexyy_to_srgb(x, y, r(Y))
self.red[i] = r_ * self.maximum
self.green[i] = g_ * self.maximum
self.blue[i] = b_ * self.maximum
elif any(f is not None for f in (r, g, b)):
# Manipulate all curves individually if their adjustments are not identical
# if we are given a function for any curve
for i in range(i_size):
# Convert to CIE xyY
(x, y, Y) = srgb_to_ciexyy(self.red[i] / self.maximum,
self.green[i] / self.maximum,
self.blue[i] / self.maximum)
# Manipulate and convert by to sRGB for selected channels individually
if r is not None: self.red[i] = ciexyy_to_srgb(x, y, r(Y))[0] * self.maximum
if g is not None: self.green[i] = ciexyy_to_srgb(x, y, g(Y))[1] * self.maximum
if b is not None: self.blue[i] = ciexyy_to_srgb(x, y, b(Y))[2] * self.maximum
def lower_resolution(self, rx_colours = None, ry_colours = None, gx_colours = ..., gy_colours = ..., bx_colours = ..., by_colours = ...):
'''
Emulates low colour resolution
@param rx_colours:int? The number of colours to emulate on the red encoding axis
@param ry_colours:int? The number of colours to emulate on the red output axis
@param gx_colours:int|...? The number of colours to emulate on the green encoding axis, `rx_colours` if `...`
@param gy_colours:int|...? The number of colours to emulate on the green output axis, `ry_colours` if `...`
@param bx_colours:int|...? The number of colours to emulate on the blue encoding axis, `gx_colours` if `...`
@param by_colours:int|...? The number of colours to emulate on the blue output axis, `gy_colours` if `...`
Where `None` is used the default value will be used, for *x_colours:es that is `i_size`,
and for *y_colours:es that is `o_size`
'''
# Handle overloading
if gx_colours is ...: gx_colours = rx_colours
if gy_colours is ...: gy_colours = ry_colours
if bx_colours is ...: bx_colours = gx_colours
if by_colours is ...: by_colours = gy_colours
# Select default values where default is requested
if rx_colours is None: rx_colours = i_size
if ry_colours is None: ry_colours = o_size
if gx_colours is None: gx_colours = i_size
if gy_colours is None: gy_colours = o_size
if bx_colours is None: bx_colours = i_size
if by_colours is None: by_colours = o_size
# Combine pair X and Y parameters for each channel
r_colours = (rx_colours, ry_colours)
g_colours = (gx_colours, gy_colours)
b_colours = (bx_colours, by_colours)
# Manipulate colour curves
for i_curve, (x_colours, y_colours) in self.__values(r_colours, g_colours, b_colours):
# But not if adjustment is neutral
if (x_colours == i_size) and (y_colours == o_size):
continue
o_curve = [0] * i_size
x_, y_, i_ = x_colours - 1, y_colours - 1, i_size - 1
for i in range(i_size):
# Scale encoding
x = int(i * x_colours / i_size)
x = int(x * i_ / x_)
# Scale output
y = int(i_curve[x] / self.maximum * y_ + 0.5)
o_curve[i] = y / y_ * self.maximum
i_curve[:] = o_curve
def start_over(self, r = True, g = ..., b = ...):
'''
Reverts the curves to identity mappings
@param r:bool Whether to reset the red colour curve
@param g:bool|... Whether to reset the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to reset the blue colour curve, defaults to `g` if `...`
'''
if self.depth > 0:
def make_ramp(size):
return [int(x * self.maximum / (size - 1) + 0.5) for x in range(size)]
else:
def make_ramp(size):
return [x / (size - 1) for x in range(size)]
for curve in self.__bool(r, g, b):
curve[:] = make_ramp(len(curve))
def clip_below(self, r = True, g = ..., b = ...):
'''
Clip all values below the actual minimum
@param r:bool Whether to clip the red colour curve
@param g:bool|... Whether to clip the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to clip the blue colour curve, defaults to `g` if `...`
'''
for curve in self.__bool(r, g, b):
curve[:] = [max(0, y) for y in curve]
def clip_above(self, r = True, g = ..., b = ...):
'''
Clip all values above the actual maximum
@param r:bool Whether to clip the red colour curve
@param g:bool|... Whether to clip the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to clip the blue colour curve, defaults to `g` if `...`
'''
for curve in self.__bool(r, g, b):
curve[:] = [min(y, self.maximum) for y in curve]
def clip(self, r = True, g = ..., b = ...):
'''
Clip all values below the actual minimum and above the actual maximum
@param r:bool Whether to clip the red colour curve
@param g:bool|... Whether to clip the green colour curve, defaults to `r` if `...`
@param b:bool|... Whether to clip the blue colour curve, defaults to `g` if `...`
'''
for curve in self.__bool(r, g, b):
curve[:] = [min(max(0, y), self.maximum) for y in curve]
class LibgammaCRTC(CRTC):
'''
A CRTC using the libgamma backend
'''
def __init__(self, screen, crtc):
'''
Constructor
The user should not use this, but use `get_outputs` instead
@param screen:LibgammaScreen The screen of the CRTC, using the libgamma backend
@param crtc:int The index of the CRTC
'''
import libgamma
CRTC.__init__(self)
self.crtc = libgamma.CRTC(screen.screen, crtc)
self.screen = screen
if screen.display.caps.crtc_restore:
self.restore = self.crtc.restore
else:
self.restore = None
info = self.crtc.information(~0)[0]
connector_types = {
libgamma.LIBGAMMA_CONNECTOR_TYPE_9PinDIN : '9PinDIN',
libgamma.LIBGAMMA_CONNECTOR_TYPE_Component : 'Component',
libgamma.LIBGAMMA_CONNECTOR_TYPE_Composite : 'Composite',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DSI : 'DSI',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DVI : 'DVI',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DVIA : 'DVIA',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DVID : 'DVID',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DVII : 'DVII',
libgamma.LIBGAMMA_CONNECTOR_TYPE_DisplayPort : 'DisplayPort',
libgamma.LIBGAMMA_CONNECTOR_TYPE_HDMI : 'HDMI',
libgamma.LIBGAMMA_CONNECTOR_TYPE_HDMIA : 'HDMIA',
libgamma.LIBGAMMA_CONNECTOR_TYPE_HDMIB : 'HDMIB',
libgamma.LIBGAMMA_CONNECTOR_TYPE_LFP : 'LFP',
libgamma.LIBGAMMA_CONNECTOR_TYPE_LVDS : 'LVDS',
libgamma.LIBGAMMA_CONNECTOR_TYPE_SVIDEO : 'SVIDEO',
libgamma.LIBGAMMA_CONNECTOR_TYPE_TV : 'TV',
libgamma.LIBGAMMA_CONNECTOR_TYPE_VGA : 'VGA',
libgamma.LIBGAMMA_CONNECTOR_TYPE_VIRTUAL : 'VIRTUAL',
libgamma.LIBGAMMA_CONNECTOR_TYPE_eDP : 'eDP'
}
subpixel_orders = {
libgamma.LIBGAMMA_SUBPIXEL_ORDER_HORIZONTAL_BGR : 'BGR',
libgamma.LIBGAMMA_SUBPIXEL_ORDER_HORIZONTAL_RGB : 'RGB',
libgamma.LIBGAMMA_SUBPIXEL_ORDER_NONE : 'None',
libgamma.LIBGAMMA_SUBPIXEL_ORDER_VERTICAL_BGR : 'vBGR',
libgamma.LIBGAMMA_SUBPIXEL_ORDER_VERTICAL_RGB : 'vRGB'
}
self.edid = None if info.edid_error else libgamma.behex_edid_uppercase(info.edid)
self.width_mm = None if info.width_mm_error else info.width_mm
self.height_mm = None if info.height_mm_error else info.height_mm
self.red_gamma_size = None if info.gamma_size_error else info.red_gamma_size
self.green_gamma_size = None if info.gamma_size_error else info.green_gamma_size
self.blue_gamma_size = None if info.gamma_size_error else info.blue_gamma_size
self.gamma_depth = None if info.gamma_depth_error else info.gamma_depth
self.gamma_support = None if info.gamma_support_error else info.gamma_support
self.subpixel_order = None if info.subpixel_order_error else info.subpixel_order
if self.subpixel_order in subpixel_orders:
self.subpixel_order = subpixel_orders[self.subpixel_order]
self.active = None if info.active_error else info.active
self.connector_name = None if info.connector_name_error else info.connector_name
self.connector_type = None if info.connector_type_error else info.connector_type
if self.connector_type in connector_types:
self.connector_type = connector_types[self.connector_type]
if not info.gamma_size_error and not info.gamma_depth_error:
self.ramps = libgamma.GammaRamps(self.red_gamma_size, self.green_gamma_size,
self.blue_gamma_size, depth = self.gamma_depth)
@property
def backend(self):
'''
The backend which is used to access the CLUT:s, is either the
name of a library or the name of a display server or protocol
@return :str The backend which is used to access the CLUT:s
'''
return 'libgamma'
def get_gamma(self, low_priority = None, high_priority = None, coalesce = True):
'''
Get the gamma ramps on the CRTC or the table of applied adjustments
@param low_priority:int? Do not return adjustments with lower priority than
this value, `None` means that there is not lower bound.
Must be `None` if cooperative gamma is not supported.
@param high_priority:int? Do not return adjustments with higher priority than
this value, `None` means that there is not upper bound.
Must be `None` if cooperative gamma is not supported.
@param coalesce:bool If `False` return the adjustment table, if `True`
return the resulting ramps of all adjustments with a
priority within [`low_priority`, `high_priority`].
Must be `True` if cooperative gamma is not supported.
@return :Ramps|list<(class:str, priority:int, ramps:Ramps)>
The resulting ramps (if `coalesce` is `True`, or the
ramps if cooperative gamma is not supported) or
a list, sorted by priority, of the adjustments (if
`coalesce` is `False`), where each element is a tuple
with the adjustment's identifier, priority, and ramps.
'''
if low_priority is not None or high_priority is not None or not coalesce:
raise Exception('Cooperative gamma is not supported')
self.crtc.get_gamma(self.ramps)
return Ramps.copy(self.ramps)
def set_gamma(self, ramps, priority = None, rule = None, lifespan = 1):
'''
Set the gamma ramps on the CRTC
@param ramps:Ramps The gamma ramps
@param priority:int? The priority of the adjustment, `None` for the default.
Must be `None` (default) if cooperative gamma is not supported.
@param rule:str? The rule of the adjustment, `None` for the default.
The rule is the last part of the adjustment's identifier,
if this is unique within the program, it should be universally
unique unless another program is intentionally make it not so.
Must be `None` (default) if cooperative gamma is not supported.
@param lifespan:int The lifespan of the algorithm: `Lifespan.UNTIL_DEATH`,
`Lifespan.UNTIL_REMOVAL` (default), or `Lifespan.REMOVE`
@return The ramps which the adjustments are written to, this will
either be `ramps` or `self.ramps`
'''
import libgamma
if priority is not None or rule is not None or lifespan != 1:
raise Exception('Cooperative gamma is not supported')
if ramps is self.ramps:
self.crtc.set_gamma(ramps)
return ramps
match = ramps.depth == self.gamma_depth
match = match and len(ramps.red) == self.red_gamma_size
match = match and len(ramps.green) == self.green_gamma_size
match = match and len(ramps.blue) == self.blue_gamma_size
if not match:
ramps = Ramps.copy(ramps, self.gamma_depth,
(self.red_gamma_size, self.green_gamma_size, self.blue_gamma_size))
if isinstance(ramps, libgamma.GammaRamps):
self.crtc.set_gamma(ramps)
return
for i in range(len(ramps.red)):
self.ramps.red[i] = ramps.red[i]
for i in range(len(ramps.green)):
self.ramps.green[i] = ramps.green[i]
for i in range(len(ramps.blue)):
self.ramps.blue[i] = ramps.blue[i]
self.crtc.set_gamma(self.ramps)
return self.ramps
class LibgammaScreen(Screen):
'''
A screen (or graphics card) using the libgamma backend
'''
def __init__(self, display, screen, crtcs = None):
'''
Constructor
The user should not use this, but use `get_outputs` instead
@param display:LibgammaDisplay The display of the screen, using the libgamma backend
@param screen:int The index of the screen
@param crtcs:set<int|str>? List of CRTC:s to include, `None` for all
'''
import libgamma
self.screen = libgamma.Partition(display.display, screen)
self.display = display
if display.caps.partition_restore:
self.restore = self.screen.restore
elif display.caps.crtc_restore:
self.restore = self.__restore_all_crtcs
else:
self.restore = None
self.crtcs = []
if crtcs is not None:
crtcs = list(crtcs)
for i in range(self.screen.crtcs_available):
crtc = LibgammaCRTC(self, i)
if (crtcs is None) or (i in crtcs) or (crtc.connector_name in crtcs):
self.crtcs.append(crtc)
elif isinstance(crtc.edid, str) and (crtc.edid.upper() in crtcs):
self.crtcs.append(crtc)
else:
del crtc
@property
def backend(self):
'''
The backend which is used to access the CLUT:s, is either the
name of a library or the name of a display server or protocol
@return :str The backend which is used to access the CLUT:s
'''
return 'libgamma'
def __restore_all_crtcs(self):
'''
Restore the CLUT:s to the (configured) system defaults, for each CRTC
'''
for crtc in self.crtcs:
crtc.restore()
class LibgammaDisplay(Display):
'''
A display using the libgamma backend
'''
def __init__(self, method = None, display = None, screens = None, crtcs = None):
'''
Constructor
The user should not use this, but use `get_outputs` instead
@param method:str? The adjustment method, `None` for the best available
@param display:str? The display, `None` to read the environment, or use
the only display if the adjustment method only supports
one display (e.g. like on Windows)
@param screens:set<int>? Lists of screens to include, `None` for all
@param crtcs:set<int|str>|dict<int,set<int|str>>?
List of CRTC:s to include, `None` for all, elements can
either be indices, connector name, or EDID:s; or a
dictionary mapping for screen indices to such lists
'''
import libgamma
self.cooperative = False
if method is None:
method = get_adjustment_methods()[0]
self.display = libgamma.Site(method, display)
self.caps = libgamma.method_capabilities(method)
if self.caps.site_restore:
self.restore = self.display.restore
elif self.caps.partition_restore or self.caps.crtc_restore:
self.restore = self.__restore_all_partitions
else:
self.restore = None
if screens is None:
screens = range(self.display.partitions_available)
self.screens = []
self.crtcs = []
for screen in screens:
cs = crtcs
if isinstance(cs, dict):
cs = cs[screen] if screen in cs else []
screen = LibgammaScreen(self, screen, cs)
self.screens.append(screen)
self.crtcs.extend(screen.crtcs)
@property
def backend(self):
'''
The backend which is used to access the CLUT:s, is either the
name of a library or the name of a display server or protocol
@return :str The backend which is used to access the CLUT:s
'''
return 'libgamma'
@property
def lowest_priority(self):
'''
Return the lowest filter priority accepted by the display server,
or other backend implementing cooperative gamma, that is, the
priority that guarantees that no other filter, that is not also
using this priority, is applied after a filter
@return :int? The lowest accepted filter priority (applied last),
`None` if cooperative gamma is not supported
'''
return None
@property
def highest_priority(self):
'''
Return the highest filter priority accepted by the display server,
or other backend implementing cooperative gamma, that is, the
priority that guarantees that no other filter, that is not also
using this priority, is applied before a filter
@return :int? The highest accepted filter priority (applied first),
`None` if cooperative gamma is not supported
'''
return None
def __restore_all_partitions(self):
'''
Restore the CLUT:s to the (configured) system defaults, for each screen
'''
for screen in self.screens:
screen.restore()
def get_adjustment_methods(libgamma_level = 0):
'''
Returns a list of available adjustment methods
@param libgamma_level:int Which libgamma adjustment methods to include:
-1: None
0: Methods that the environment suggests will work, excluding fake.
1: Methods that the environment suggests will work, including fake.
2: All real non-fake methods.
3: All real methods.
4: All methods.
@return :list<str> Adjustment method in order of preference
'''
ret = []
if libgamma_level >= 0:
try:
import libgamma
lgamma_meths = libgamma.list_methods(libgamma_level)
lgamma_map = {
libgamma.LIBGAMMA_METHOD_DUMMY : 'dummy',
libgamma.LIBGAMMA_METHOD_X_RANDR : 'randr',
libgamma.LIBGAMMA_METHOD_X_VIDMODE : 'vidmode',
libgamma.LIBGAMMA_METHOD_LINUX_DRM : 'drm',
libgamma.LIBGAMMA_METHOD_W32_GDI : 'w32gdi',
libgamma.LIBGAMMA_METHOD_QUARTZ_CORE_GRAPHICS : 'quartz'
}
ret += [lgamma_map[m] if m in lgamma_map else m for m in lgamma_meths]
except:
pass
return ret
def get_outputs(method = None, display = None, screens = None, crtcs = None):
'''
Get access to CRTC for editing the their gamma ramps
@param method:str? The adjustment method, `None` for the best available.
"dummy" for libgamma with dummy method,
"randr" for libgamma with X's RAndR protocol,
"vidmode" for libgamma with X's VidMode protocol,
"drm" for libgamma with Direct Rendering Manager,
"w32gdi" for libgamma with Window's GDI,
"quartz" for libgamma with Quartz's (MacOS's) Core Graphics
@param display:str? The display, `None` to read the environment, or use
the only display if the adjustment method only supports
one display (e.g. like on Windows)
@param screens:set<int>? Lists of screens to include, `None` for all
@param crtcs:set<int|str>|dict<int,set<int|str>>?
List of CRTC:s to include, `None` for all, elements can
either be indices, connector name, or EDID:s; or a
dictionary mapping for screen indices to such lists
@return :Display A display
'''
if isinstance(method, str):
#try:
import libgamma
lgamma_meths = {
'dummy' : libgamma.LIBGAMMA_METHOD_DUMMY,
'randr' : libgamma.LIBGAMMA_METHOD_X_RANDR,
'vidmode' : libgamma.LIBGAMMA_METHOD_X_VIDMODE,
'drm' : libgamma.LIBGAMMA_METHOD_LINUX_DRM,
'w32gdi' : libgamma.LIBGAMMA_METHOD_W32_GDI,
'quartz' : libgamma.LIBGAMMA_METHOD_QUARTZ_CORE_GRAPHICS
}
return LibgammaDisplay(lgamma_meths[method], display, screens, crtcs)
#except:
# pass
#raise Exception("Adjustment method %s is not available" % method)
else:
return LibgammaDisplay(method, display, screen, crtc)