1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
/* -*- java -*- */
/**
* Copyright © 2014 Mattias Andrée (maandree@member.fsf.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
public class £{name}<T>
{
/**
* The default initial capacity
*/
private static final int DEFAULT_INITIAL_CAPACITY = 128;
/**
* Sentinel value indicating that an edge has been reached
*/
public static final int EDGE = -1;
/**
* Sentinel value indicating that the position is unused
*/
public static final int UNUSED = -2;
/**
* Constructor
*/
public £{name}()
{
this(DEFAULT_INITIAL_CAPACITY);
}
/**
* Constructor
*
* @param initialCapacity The initial size of the arrays
*/
@SuppressWarnings("unchecked")
public £{name}(int initialCapacity)
{
/* Most be a power of 2 */
if ((initialCapacity & initialCapacity - 1) != 0)
{
initialCapacity |= initialCapacity >> 1;
initialCapacity |= initialCapacity >> 2;
initialCapacity |= initialCapacity >> 4;
initialCapacity |= initialCapacity >> 8;
initialCapacity |= initialCapacity >> 16;
initialCapacity++;
}
this.capacity = initialCapacity;
this.next = new int[initialCapacity];
£>(( with_prev )) &&
this.previous = new int[initialCapacity];
this.reusable = new int[initialCapacity];
this.values = (T[])(new Object[initialCapacity]);
}
/**
* The size of the arrays
*/
private int capacity;
/**
* The index after the last used index in
* {@link #values} and {@link #next}
*/
public int end = 0;
/**
* Head of the stack of reusable positions
*/
private int reuseHead = 0;
/**
* Stack of indices than are no longer in use
*/
private int[] reusable;
£>if (( with_head )); then
/**
* The first node in the list
*/
public int head = EDGE;
£>fi
£>if (( with_tail )); then
/**
* The last node in the list
*/
public int tail = EDGE;
£>fi
/**
* The value stored in each node
*/
public T[] values;
/**
* The next node for each node, {@link #EDGE}
* if the current node is the last node, and
* {@link #UNUSED} if there is no node on this
* position
*/
public int[] next;
£>if (( with_prev )); then
/**
* The previou node for each node, {@link #EDGE}
* if the current node is the first node, and
* {@link #UNUSED} if there is no node on this
* position
*/
public int[] previous;
£>fi
/**
* Pack the list so that there are no reusable
* positions, and reduce the capacity to the
* smallest capacity that can be used. Not that
* values (nodes) returned by the list's methods
* will become invalid. Additionally (to reduce
* the complexity) the list will be defragment
* so that the nodes' indices are continuous.
* This method has linear time complexity and
* linear memory complexity.
*/
public void pack()
{
int size = this.end - reuseHead;
int cap = size;
if ((cap & cap - 1) != 0)
{
cap |= cap >> 1;
cap |= cap >> 2;
cap |= cap >> 4;
cap |= cap >> 8;
cap |= cap >> 16;
cap++;
}
@SuppressWarnings("unchecked")
T[] vals = (T[])(new Object[cap]);
£>if (( 1 - with_head )); then
int head = 0;
while ((head < this.end) && (this.next[head] == UNUSED))
head++;
if (head < this.end)
for (int ptr = 0, node = head; (node != head) || (ptr == 0);)
£>else
for (int ptr = 0, node = this.head; node != EDGE;)
£>fi
{
vals[ptr++] = this.values[node];
node = this.next[node];
}
if (cap != this.capacity)
{
this.reusable = new int[cap];
this.next = new int[cap];
£>(( with_prev )) &&
this.previous = new int[cap];
}
for (int i = 0; i < size;)
this.next[i] = ++i;
this.next[size - 1] = EDGE;
£>if (( with_prev )); then
for (int i = 0; i < size; i++)
this.previous[i] = i - 1;
£>fi
this.values = vals;
this.end = size;
this.reuseHead = 0;
£>(( with_head )) &&
this.head = 0;
£>(( with_tail )) &&
this.tail = this.end - 1;
}
/**
* Gets the next free position, and grow the
* arrays if necessary. This methods has constant
* amortised time complexity.
*
* @return The next free position
*/
@SuppressWarnings("unchecked")
private int getNext()
{
if (this.reuseHead > 0)
return this.reusable[--this.reuseHead];
if (this.end == this.capacity)
{
this.capacity <<= 1;
System.arraycopy(this.values, 0, this.values = (T[])(new Object[this.capacity]), 0, this.end);
System.arraycopy(this.reusable, 0, this.reusable = new int[this.capacity], 0, this.end);
System.arraycopy(this.next, 0, this.next = new int[this.capacity], 0, this.end);
£>(( with_prev )) &&
System.arraycopy(this.previous, 0, this.previous = new int[this.capacity], 0, this.end);
}
return this.end++;
}
/**
* Mark a position as unused
*
* @param node The position
* @return The position
*/
private int unuse(int node)
{
this.reusable[reuseHead++] = node;
this.next[node] = UNUSED;
£>(( with_prev )) &&
this.previous[node] = UNUSED;
return node;
}
£>if (( 1 - with_head )) && (( 1 - with_tail )); then
/**
* Creates the initial node in a circularly linked list
*
* @param value The value of the initial node
* @return The node that has been created and inserted
*/
public int create(T value)
{
int node = getNext();
this.values[node] = value;
£>(( with_prev )) &&
this.previous[node] = node;
return this.next[node] = node;
}
£>fi
£>if (( with_head )); then
/**
* Insert a value in the beginning of the list.
* This methods has constant amortised time complexity.
*
* @param value The value to insert
* @return The node that has been created and inserted
*/
public int insertBeginning(T value)
{
int node = getNext();
this.values[node] = value;
this.next[node] = this.head;
£>if (( with_prev )); then
if (this.next[node] != EDGE)
this.previous[this.next[node]] = node;
£>fi
£>if (( with_tail )); then
if (this.head == EDGE)
this.tail = node;
£>fi
this.head = node;
return node;
}
/**
* Remove the node at the beginning of the list.
* This methods has constant time complexity.
*
* @return The node that has been removed
*/
public int removeBeginning()
{
int node = this.head;
if (node != EDGE)
this.head = this.next[this.head];
£>if (( with_prev )); then
if (this.head != EDGE)
this.previous[this.head] = EDGE;
£>fi
£>if (( with_tail )); then
if (this.tail == node)
this.tail = EDGE;
£>fi
return unuse(node);
}
£>fi
/**
* Insert a value after a specified, reference, node.
* This methods has constant amortised time complexity.
*
* @param value The value to insert
* @param predecessor The reference node
* @return The node that has been created and inserted
*/
public int insertAfter(T value, int predecessor)
{
int node = getNext();
this.values[node] = value;
this.next[node] = this.next[predecessor];
this.next[predecessor] = node;
£>if (( with_prev )); then
this.previous[node] = predecessor;
if (this.next[node] != EDGE)
this.previous[this.next[node]] = node;
£>fi
£>if (( with_tail )); then
if (this.tail == predecessor)
this.tail = node;
£>fi
return node;
}
/**
* Remove the node after a specified, reference, node.
* This methods has constant time complexity.
*
* @param predecessor The reference node
* @return The node that has been removed
*/
public int removeAfter(int predecessor)
{
int node = this.next[predecessor];
if (node == EDGE)
this.next[predecessor] = this.next[node];
£>if (( with_prev )); then
else if (this.next[node] != EDGE)
this.previous[this.next[node]] = predecessor;
£>fi
£>if (( with_tail )); then
if (this.tail == node)
this.tail = predecessor;
£>fi
return unuse(node);
}
£>if (( with_prev )); then
/**
* Insert a value before a specified, reference, node.
* This methods has constant amortised time complexity.
*
* @param value The value to insert
* @param successor The reference node
* @return The node that has been created and inserted
*/
public int insertBefore(T value, int successor)
{
int node = getNext();
this.values[node] = value;
this.previous[node] = this.previous[successor];
this.previous[successor] = node;
this.next[node] = successor;
if (this.previous[node] != EDGE)
this.next[this.previous[node]] = node;
£>if (( with_head )); then
if (this.head == successor)
this.head = node;
£>fi
return node;
}
/**
* Remove the node before a specified, reference, node.
* This methods has constant time complexity.
*
* @param successor The reference node
* @return The node that has been removed
*/
public int removeBefore(int successor)
{
int node = this.previous[successor];
if (node == EDGE)
this.previous[successor] = this.previous[node];
else if (this.previous[node] != EDGE)
this.next[this.previous[node]] = successor;
£>if (( with_head )); then
if (this.head == node)
this.head = successor;
£>fi
return unuse(node);
}
/**
* Remove the node from the list.
* This methods has constant time complexity.
*
* @param node The node to remove
*/
public void remove(int node)
{
if (this.previous[node] != EDGE)
this.next[this.previous[node]] = this.next[node];
£>if (( with_head )); then
else
this.head = this.next[node];
£>fi
if (this.next[node] != EDGE)
this.previous[this.next[node]] = this.previous[node];
£>if (( with_tail )); then
else
this.tail = this.previous[node];
£>fi
unuse(node);
}
£>fi
£>if (( with_tail )); then
/**
* Insert a value in the end of the list.
* This methods has constant amortised time complexity.
*
* @param value The value to insert
* @return The node that has been created and inserted
*/
public int insertEnd(T value)
{
if (this.tail == EDGE)
£>(( with_head )) &&
return insertBeginning(value);
£>(( with_head )) ||
return this.values[this.tail = getNext()] = value;
return insertAfter(value, this.tail);
}
£>if (( with_prev )); then
/**
* Remove the node at the end of the list.
* This methods has constant time complexity.
*
* @return The node that has been removed
*/
public int removeEnd()
{
int node = this.tail;
if (node != EDGE)
this.next[this.tail = this.previous[node]] = EDGE;
return unuse(node);
}
£>fi
£>fi
}
|