aboutsummaryrefslogtreecommitdiffstats
path: root/src/algorithms/bits/Bits.java
blob: 8f794e338922dbc1fa2f9094b41e9f282bc82409 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/**
 * Copyright © 2014  Mattias Andrée (maandree@member.fsf.org)
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 * 
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
package algorithms.bits;


/**
 * Operations on individual bits
 */
public class Bits
{
£<function table
  {
      if [ $1 = 0 ]; then
          echo -n "${2}, "
      else
	  level=$(( $1 - 1 ))
          table $level $(( $2 + 0 ))
          table $level $(( $2 + 1 ))
          table $level $(( $2 + 1 ))
          table $level $(( $2 + 2 ))
      fi
£>}

    /**
     * Lookup table for the number of set bits in a byte
     */
    private static byte[] ONES_TABLE_256 = { £(table 4 0) };
    /* ONES_TABLE_256[0] = 0;
     * for (int i = 0; i < 256; i++)
     *     ONES_TABLE_256[i] = (i & 1) + ONES_TABLE_256[i / 2];
     */
    
    
£<for T_S in char_2 byte_1 short_2 int_4 long_8; do
  T=${T_S%_*}
£>S=${T_S#*_}
    /**
     * Sets or clears individual bits in an integer
     * 
     * @param   value  The value to modify
     * @param   mask   Mask of bits to modify
     * @param   flag   1 if the bit should be set, 0 if the bit should be clears
     * @return         The value with the bits modified
     */
    public static £{T} set_clear(£{T} value, £{T} mask, £{T} flag)
    {
	return (£{T})(value ^ ((-flag ^ value) & mask));
    }
    
    /**
     * Sets or clears individual bits in an integer, superscalar version
     * 
     * @param   value  The value to modify
     * @param   mask   Mask of bits to modify
     * @param   flag   1 if the bit should be set, 0 if the bit should be clears
     * @return         The value with the bits modified
     */
    public static £{T} set_clear_superscalar(£{T} value, £{T} mask, £{T} flag)
    {
	return (£{T})((value & ~mask) | (-flag & mask));
    }
    
    /**
     * Merge bits from two values
     * 
     * @param   zero  Integer whose bits should be kept where the mask has zeroes
     * @param   one   Integer whose bits should be kept where the mask has onces
     * @param   mask  The merge mask
     * @return        {@code (zero & ~mask) | (one & mask)}
     */
    public static £{T} merge(£{T} zero, £{T} one, £{T} mask)
    {
	return (£{T})(zero ^ ((£{T})(zero ^ one) & mask));
    }
    
    /**
     * Clears the least significant bit set
     * 
     * @param   value  The integer
     * @return         The value with its least significant set bit cleared
     */
    public static £{T} clearLeastSignificant(£{T} value)
    {
	return (£{T})(value & (value - 1));
    }
    
    /**
     * Calculate the number of set bits in an integer, naïve version
     * 
     * @param   value  The integer
     * @return         The number of set bits
     */
    public static £{T} ones_naïve(£{T} value)
    {
	£{T} count = 0;
	for (; value != 0; value >>>= 1)
	    count += (£{T})(value & 1);
	return count;
    }
    
    /**
     * Calculate the number of set bits in an integer, Wegner's version
     * 
     * @param   value  The integer
     * @return         The number of set bits
     */
    public static £{T} ones_wegner(£{T} value)
    {
	£{T} count = 0;
	for (; value != 0; count++)
	    value &= value - 1; /* clear the least significant bit set */
	return count;
    }
    
    /**
     * Calculate the number of set bits in an integer, partial lookup table version
     * 
     * @param   value  The integer
     * @return         The number of set bits
     */
    public static byte ones_table(£{T} value)
    {
£>function _ { echo "ONES_TABLE_256[(int)((value >> $1) & 255)]" ; }
        return (byte)((byte)(£(_ 0) + £(_ 8)) + (byte)(£(_ 16) + £(_ 24)));
	/* In C you can split the value by getting the address of the value and cast the pointer to char* */
    }
    
    /**
     * Calculate the number of set bits in an integer, 64-bits instructions version
     * 
     * @param   value  The integer
     * @return         The number of set bits
     */
    public static long ones_64bits(£{T} value)
    {
	long v = value, rc;
£>(( $S > 1 )) &&
	if ((v & (1L << 14L) - 1L) == v)
	{
	    rc = (v * 0x200040008001L & 0x111111111111111L) % 0xF;
	}
£>if (( $S >= 2 )); then
	else
£>(( $S > 3 )) &&
	    if ((v & (1L << 24L) - 1L) == v)
	{
	    rc = ((v & 0xFFF) * 0x1001001001001L & 0x84210842108421L) % 0x1F;
	    rc += (((v & 0XFFF000) >> 12) * 0x1001001001001L & 0x84210842108421L) % 0x1F;
	}
£>if (( $S > 3 )); then
	else
£>(( $S > 4 )) &&
	    if ((v & (1L << 32L) - 1L) == v)
	{
	    rc = ((v & 0xFFF) * 0x1001001001001L & 0x84210842108421L) % 0x1F;
	    rc += (((v & 0xFFF000) >> 12) * 0x1001001001001L & 0x84210842108421L) % 0x1F;
	    rc += ((v >> 24) * 0x1001001001001L & 0x84210842108421L) % 0x1F;
	}
£>if (( $S > 4 )); then
	else
	{
	    rc = ones_64bits(v & (1L << 32L) - 1L);
	    rc += ones_64bits(v >>> 32);
	}
£>fi;fi;fi
	return rc;
    }
    
    /**
     * Calculate the number of set bits in an integer, naïve parallel version
     * 
     * @param   value  The integer
     * @return         The number of set bits
     */
    public static £{T} ones_parallel(£{T} value)
    {
	£{T} rc = value;
	rc = (£{T})(((rc >>  1) & (£{T})0xAAAAAAAAAAAAAAAAL) + (rc & (£{T})0xAAAAAAAAAAAAAAAAL));
	rc = (£{T})(((rc >>  2) & (£{T})0xCCCCCCCCCCCCCCCCL) + (rc & (£{T})0xCCCCCCCCCCCCCCCCL));
	rc = (£{T})(((rc >>  4) & (£{T})0xF0F0F0F0F0F0F0F0L) + (rc & (£{T})0xF0F0F0F0F0F0F0F0L));
£>(( $S > 1 )) &&
	rc = (£{T})(((rc >>  8) & (£{T})0xFF00FF00FF00FF00L) + (rc & (£{T})0xFF00FF00FF00FF00L));
£>(( $S > 2 )) &&
	rc = (£{T})(((rc >> 16) & (£{T})0xFFFF0000FFFF0000L) + (rc & (£{T})0xFFFF0000FFFF0000L));
£>(( $S > 4 )) &&
	rc = (£{T})(((rc >> 32) & (£{T})0xFFFFFFFF00000000L) + (rc & (£{T})0xFFFFFFFF00000000L));
	return rc;
    }
    
    /**
     * Calculate the number of set bits in an integer, optimised parallel version
     * 
     * @param   value  The integer
     * @return         The number of set bits
     */
    public static £{T} ones_optimised_parallel(£{T} value)
    {
	£{T} rc = (£{T})(value - ((value >> 1) & (£{T})0x5555555555555555L));
	rc = (£{T})(((rc >>  2) & (£{T})0x3333333333333333L) + (rc & (£{T})0x3333333333333333L));
	rc = (£{T})(((rc >>  4) + rc) & (£{T})0x0F0F0F0F0F0F0F0FL);
£>(( $S > 1 )) &&
	rc = (£{T})(((rc >>  8) + rc) & (£{T})0x00FF00FF00FF00FFL);
£>(( $S > 2 )) &&
	rc = (£{T})(((rc >> 16) + rc) & (£{T})0x0000FFFF0000FFFFL);
£>(( $S > 4 )) &&
	rc = (£{T})(((rc >> 32) + rc) & (£{T})0x00000000FFFFFFFFL);
	return rc;
    }
    
    /**
     * Calculate the number of set bits in an integer, parallel–64bits-like hybrid version, probably the best version
     * 
     * @param   value  The integer
     * @return         The number of set bits
     */
    public static £{T} ones_hybrid(£{T} value)
    {
£>L1="($T)$(bc <<< "(256^$S - 1) / 3")L"
£>L2="($T)$(bc <<< "(256^$S - 1) / 15 * 3")L"
£>L3="($T)$(bc <<< "(256^$S - 1) / 255 * 15")L"
£>L4="($T)$(bc <<< "(256^$S - 1) / 255")L"

	value -= (value >> 1) & £{L1};
	value = (£{T})((value & £{L2}) + ((value >> 2) & £{L2}));
	value = (£{T})((value + (value >> 4)) & £{L3});
	value = (£{T})((value * £{L4}) >> ((£{S} - 1) * 8));
	return value; /* Only applicable upto 128 bits */
    }
£>done
}