1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
|
/**
* Copyright © 2014 Mattias Andrée (maandree@member.fsf.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package algorithms.bits;
/**
* Operations on individual bits
*/
public class Bits
{
£<function ones-table
{
if [ $1 = 0 ]; then
echo -n "${2}, "
else
level=$(( $1 - 1 ))
ones-table $level $(( $2 + 0 ))
ones-table $level $(( $2 + 1 ))
ones-table $level $(( $2 + 1 ))
ones-table $level $(( $2 + 2 ))
fi
£>}
/**
* Lookup table for the number of set bits in a byte
*/
private static byte[] ONES_TABLE_256 = { £(ones-table 4 0) };
/* ONES_TABLE_256[0] = 0;
* for (int i = 0; i < 256; i++)
* ONES_TABLE_256[i] = (i & 1) + ONES_TABLE_256[i / 2];
*/
£<function parity-table
{
if [ $1 = 0 ]; then
echo -n "${2}, "
else
level=$(( $1 - 1 ))
parity-table $level $(( $2 ^ 0 ))
parity-table $level $(( $2 ^ 1 ))
parity-table $level $(( $2 ^ 1 ))
parity-table $level $(( $2 ^ 0 ))
fi
£>}
/**
* Lookup table for the parity of the bits in a byte
*/
private static byte[] PARITY_TABLE_256 = { £(parity-table 4 0) };
£<function reverse-table
{
if [ $1 = 0 ]; then
if (( $2 < 128 )); then
echo -n "${2}, "
else
echo -n "$(( $2 - 256 )), "
fi
else
level=$(( $1 - 1 ))
reverse-table $level $(( $2 + 0 * 4 ** (4 - $1) ))
reverse-table $level $(( $2 + 2 * 4 ** (4 - $1) ))
reverse-table $level $(( $2 + 1 * 4 ** (4 - $1) ))
reverse-table $level $(( $2 + 3 * 4 ** (4 - $1) ))
fi
£>}
/**
* Lookup table for the revered bit order in a byte
*/
private static byte[] REVERSE_TABLE_256 = { £(reverse-table 4 0) };
/**
* Compute the parity of all bits in an integer, 64-bit multiply–modulus version
*
* @param value The integer
* @return The parity
*/
public static int parity_64bit(byte value)
{
return (int)(((value * 0x0101010101010101L) & 0x8040201008040201L) % 0x1FF) & 1;
}
/**
* Reverse the order of all bits in an integer, 64-bit instructions version
*
* @param value The integer
* @return The integer reversed
*/
public static byte reverse_64bit(byte value)
{
return (byte)(((value * 0x0202020202L) & 0x010884422010L) % 1023);
}
/**
* Reverse the order of all bits in an integer, division-free 64-bit instructions version
*
* @param value The integer
* @return The integer reversed
*/
public static byte reverse_64bit_noMod(byte value)
{
return (byte)(((value * 0x80200802L) & 0x0884422110L) * 0x0101010101L >> 32);
}
/**
* Reverse the order of all bits in an integer, 32-bit instructions version
*
* @param value The integer
* @return The integer reversed
*/
public static byte reverse_32bit(byte value)
{
return (byte)(((value * 0x0802 & 0x22110) | (value * 0x8020 & 0x88440)) * 0x10101 >> 16);
}
£<for T_S in char_2 byte_1 short_2 int_4 long_8; do
T=${T_S%_*}
£>S=${T_S#*_}
/**
* Sets or clears individual bits in an integer
*
* @param value The value to modify
* @param mask Mask of bits to modify
* @param flag 1 if the bit should be set, 0 if the bit should be clears
* @return The value with the bits modified
*/
public static £{T} set_clear(£{T} value, £{T} mask, £{T} flag)
{
return (£{T})(value ^ ((-flag ^ value) & mask));
}
/**
* Sets or clears individual bits in an integer, superscalar version
*
* @param value The value to modify
* @param mask Mask of bits to modify
* @param flag 1 if the bit should be set, 0 if the bit should be clears
* @return The value with the bits modified
*/
public static £{T} set_clear_superscalar(£{T} value, £{T} mask, £{T} flag)
{
return (£{T})((value & ~mask) | (-flag & mask));
}
/**
* Merge bits from two values
*
* @param zero Integer whose bits should be kept where the mask has zeroes
* @param one Integer whose bits should be kept where the mask has onces
* @param mask The merge mask
* @return {@code (zero & ~mask) | (one & mask)}
*/
public static £{T} merge(£{T} zero, £{T} one, £{T} mask)
{
return (£{T})(zero ^ ((£{T})(zero ^ one) & mask));
}
/**
* Clears the least significant bit set
*
* @param value The integer
* @return The value with its least significant set bit cleared
*/
public static £{T} clearLeastSignificant(£{T} value)
{
return (£{T})(value & (value - 1));
}
/**
* Calculate the number of set bits in an integer, naïve version
*
* @param value The integer
* @return The number of set bits
*/
public static £{T} ones_naïve(£{T} value)
{
£{T} count = 0;
for (; value != 0; value >>>= 1)
count += (£{T})(value & 1);
return count;
}
/**
* Calculate the number of set bits in an integer, Wegner's version
*
* @param value The integer
* @return The number of set bits
*/
public static £{T} ones_wegner(£{T} value)
{
£{T} count = 0;
for (; value != 0; count++)
value &= value - 1; /* clear the least significant bit set */
return count;
}
/**
* Calculate the number of set bits in an integer, partial lookup table version
*
* @param value The integer
* @return The number of set bits
*/
public static byte ones_table(£{T} value)
{
£>function _ { echo "ONES_TABLE_256[(int)((value >> $1) & 255)]" ; }
return (byte)((byte)(£(_ 0) + £(_ 8)) + (byte)(£(_ 16) + £(_ 24)));
/* In C you can split the value by getting the address of the
value and cast the pointer to char*, that is however slower. */
}
/**
* Calculate the number of set bits in an integer, 64-bits instructions version
*
* @param value The integer
* @return The number of set bits
*/
public static long ones_64bits(£{T} value)
{
long v = value, rc;
£>(( $S > 1 )) &&
if ((v & (1L << 14L) - 1L) == v)
{
rc = (v * 0x200040008001L & 0x111111111111111L) % 0xF;
}
£>if (( $S >= 2 )); then
else
£>(( $S > 3 )) &&
if ((v & (1L << 24L) - 1L) == v)
{
rc = ((v & 0xFFF) * 0x1001001001001L & 0x84210842108421L) % 0x1F;
rc += (((v & 0XFFF000) >> 12) * 0x1001001001001L & 0x84210842108421L) % 0x1F;
}
£>if (( $S > 3 )); then
else
£>(( $S > 4 )) &&
if ((v & (1L << 32L) - 1L) == v)
{
rc = ((v & 0xFFF) * 0x1001001001001L & 0x84210842108421L) % 0x1F;
rc += (((v & 0xFFF000) >> 12) * 0x1001001001001L & 0x84210842108421L) % 0x1F;
rc += ((v >> 24) * 0x1001001001001L & 0x84210842108421L) % 0x1F;
}
£>if (( $S > 4 )); then
else
{
rc = ones_64bits(v & (1L << 32L) - 1L);
rc += ones_64bits(v >>> 32);
}
£>fi;fi;fi
return rc;
}
/**
* Calculate the number of set bits in an integer, naïve parallel version
*
* @param value The integer
* @return The number of set bits
*/
public static £{T} ones_parallel(£{T} value)
{
£{T} rc = value;
rc = (£{T})(((rc >> 1) & (£{T})0x5555555555555555L) + (rc & (£{T})0x5555555555555555L));
rc = (£{T})(((rc >> 2) & (£{T})0x3333333333333333L) + (rc & (£{T})0x3333333333333333L));
rc = (£{T})(((rc >> 4) & (£{T})0x0F0F0F0F0F0F0F0FL) + (rc & (£{T})0x0F0F0F0F0F0F0F0FL));
£>(( $S > 1 )) &&
rc = (£{T})(((rc >> 8) & (£{T})0x00FF00FF00FF00FFL) + (rc & (£{T})0x00FF00FF00FF00FFL));
£>(( $S > 2 )) &&
rc = (£{T})(((rc >> 16) & (£{T})0x0000FFFF0000FFFFL) + (rc & (£{T})0x0000FFFF0000FFFFL));
£>(( $S > 4 )) &&
rc = (£{T})(((rc >> 32) & (£{T})0x00000000FFFFFFFFL) + (rc & (£{T})0x00000000FFFFFFFFL));
return rc;
}
/**
* Calculate the number of set bits in an integer, optimised parallel version
*
* Note tha this algorithm is optimised in the number of high-level operations
* and may be a bit slow than the non-optmised version.
*
* @param value The integer
* @return The number of set bits
*/
public static £{T} ones_optimised_parallel(£{T} value)
{
£{T} rc = (£{T})(value - ((value >> 1) & (£{T})0x5555555555555555L));
rc = (£{T})(((rc >> 2) & (£{T})0x3333333333333333L) + (rc & (£{T})0x3333333333333333L));
rc = (£{T})(((rc >> 4) + rc) & (£{T})0x0F0F0F0F0F0F0F0FL);
£>(( $S > 1 )) &&
rc = (£{T})(((rc >> 8) + rc) & (£{T})0x00FF00FF00FF00FFL);
£>(( $S > 2 )) &&
rc = (£{T})(((rc >> 16) + rc) & (£{T})0x0000FFFF0000FFFFL);
£>(( $S > 4 )) &&
rc = (£{T})(((rc >> 32) + rc) & (£{T})0x00000000FFFFFFFFL);
return rc;
}
/**
* Calculate the number of set bits in an integer, parallel–64bits-like hybrid version, probably the best version
*
* @param value The integer
* @return The number of set bits
*/
public static £{T} ones_hybrid(£{T} value)
{
£>L1="($T)$(bc <<< "(256^$S - 1) / 3")L"
£>L2="($T)$(bc <<< "(256^$S - 1) / 15 * 3")L"
£>L3="($T)$(bc <<< "(256^$S - 1) / 255 * 15")L"
£>L4="($T)$(bc <<< "(256^$S - 1) / 255")L"
value -= (value >> 1) & £{L1};
value = (£{T})((value & £{L2}) + ((value >> 2) & £{L2}));
value = (£{T})((value + (value >> 4)) & £{L3});
value = (£{T})((value * £{L4}) >> ((£{S} - 1) * 8));
return value; /* Only applicable upto 128 bits */
}
/**
* Compute the parity of all bits in an integer, naïve version
*
* @param value The integer
* @return The parity
*/
public static £{T} parity_naïve(£{T} value)
{
£{T} rc = 0;
while (value != 0)
{
rc ^= 1;
value &= value - 1;
}
return rc;
}
/**
* Compute the parity of all bits in an integer, parallel version
*
* @param value The integer
* @return The parity
*/
public static £{T} parity_parallel(£{T} value)
{
£>(( $S > 4 )) &&
value ^= value >> 32;
£>(( $S > 2 )) &&
value ^= value >> 16;
£>(( $S > 1 )) &&
value ^= value >> 8;
value ^= value >> 4;
value ^= value >> 3;
value ^= value >> 2;
value ^= value >> 1;
return (£{T})(value & 1);
}
/**
* Compute the parity of all bits in an integer, partial lookup table version
*
* @param value The integer
* @return The parity
*/
public static byte parity_table(£{T} value)
{
£>(( $S > 4 )) &&
value ^= value >> 32;
£>(( $S > 2 )) &&
value ^= value >> 16;
£>(( $S > 1 )) &&
value ^= value >> 8;
return PARITY_TABLE_256[(int)value];
}
/**
* Compute the parity of all bits in an integer, optimised parallel version
*
* @param value The integer
* @return The parity
*/
public static int parity_optimised_parallel(£{T} value)
{
£>(( $S > 4 )) &&
value ^= value >> 32;
£>(( $S > 2 )) &&
value ^= value >> 16;
£>(( $S > 1 )) &&
value ^= value >> 8;
value ^= value >> 4;
return (0x6996 >> (value & 15)) & 1;
}
/**
* Compute the parity of all bits in an integer, multiplication version
*
* @param value The integer
* @return The parity
*/
public static £{T} parity_multiplication(£{T} value)
{
value ^= value >> 1;
value ^= value >> 2;
value = (£{T})((value & (£{T})0x1111111111111111L) * (£{T})0x1111111111111111L);
return (£{T})((value >> (£{S} - 4)) & 1);
}
/**
* Reverse the order of all bits in an integer, naïve version
*
* @param value The integer
* @return The integer reversed
*/
public static £{T} reverse_naïve(£{T} value)
{
int s = £{S} * 8 - 1;
£{T} rc = value;
for (value >>>= 1; value != 0; value >>>= 1)
{
rc <<= 1;
rc |= value & 1;
s--;
}
return (£{T})(rc << s);
}
/**
* Reverse the order of all bits in an integer, parallel version
*
* @param value The integer
* @return The integer reversed
*/
public static £{T} reverse_parallel(£{T} value)
{
value = (£{T})(((value & (£{T})0x5555555555555555L) << 1) | ((value >> 1) & (£{T})0x5555555555555555L));
value = (£{T})(((value & (£{T})0x3333333333333333L) << 2) | ((value >> 2) & (£{T})0x3333333333333333L));
value = (£{T})(((value & (£{T})0x0F0F0F0F0F0F0F0FL) << 4) | ((value >> 4) & (£{T})0x0F0F0F0F0F0F0F0FL));
£>(( $S > 1 )) &&
value = (£{T})(((value & (£{T})0x00FF00FF00FF00FFL) << 8) | ((value >> 8) & (£{T})0x00FF00FF00FF00FFL));
£>(( $S > 2 )) &&
value = (£{T})(((value & (£{T})0x0000FFFF0000FFFFL) << 16) | ((value >> 16) & (£{T})0x0000FFFF0000FFFFL));
£>(( $S > 4 )) &&
value = (£{T})(((value & (£{T})0x00000000FFFFFFFFL) << 32) | ((value >> 32) & (£{T})0x00000000FFFFFFFFL));
return value;
}
/**
* Reverse the order of all bits in an integer, partial lookup table version
*
* @param value The integer
* @return The integer reversed
*/
public static £{T} reverse_table(£{T} value)
{
£>function _ { echo "(${T})(REVERSE_TABLE_256[(int)((value >> $1) & 255)] << $2)" ; }
£{T} rc = 0;
£>for s in `seq 0 8 $(( $S - 8 ))`; do
rc |= £(_ $s "($S - 8 - $s)");
£>done
return rc;
}
£>done
}
|