aboutsummaryrefslogtreecommitdiffstats
path: root/src/algorithms
diff options
context:
space:
mode:
authorMattias Andrée <maandree@operamail.com>2014-01-21 16:53:27 +0100
committerMattias Andrée <maandree@operamail.com>2014-01-21 16:53:27 +0100
commit073144d6b7abc45ab48097fac6c3175c0ab67cc9 (patch)
tree107346f6cde877cdf9b2378b0bdf79c27b450c80 /src/algorithms
parentm + partial array support in hybrid binary search (diff)
downloadalgorithms-and-data-structures-073144d6b7abc45ab48097fac6c3175c0ab67cc9.tar.gz
algorithms-and-data-structures-073144d6b7abc45ab48097fac6c3175c0ab67cc9.tar.bz2
algorithms-and-data-structures-073144d6b7abc45ab48097fac6c3175c0ab67cc9.tar.xz
partial array support in multibinary search
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to 'src/algorithms')
-rw-r--r--src/algorithms/searching/MultibinarySearch.java54
1 files changed, 51 insertions, 3 deletions
diff --git a/src/algorithms/searching/MultibinarySearch.java b/src/algorithms/searching/MultibinarySearch.java
index 841a4eb..868b2d6 100644
--- a/src/algorithms/searching/MultibinarySearch.java
+++ b/src/algorithms/searching/MultibinarySearch.java
@@ -101,6 +101,55 @@ public class MultibinarySearch
*/
public static £(fun "long[][]" indexOf "${T}[] items, ${Tarray} array, SortOrder order, SearchMode mode")
{
+ return indexOf(items, array, order, mode, 0, array.length - 1£{Targ_name});
+ }
+
+ /**
+ * Find the indices of multiple items in a list, with time
+ * complexity 𝓞(log n + m) and memory complexity 𝓞(log m)
+ *
+ * @param items Sorted list of unique items for which to search, the number
+ * of elements is named ‘m’ in the complexity analysis
+ * @param array Sorted list in which to search, the number of elements
+ * is named ‘n’ in the complexity analysis
+ * @param order The lists' element order
+ * @param mode The search mode
+ * @param start The index of the first position to search in the array
+ * @return Two arrays of integer arrays, the 0:th being the indices
+ * of items, the 1:th being their positions. That is,
+ * two separate arrays, not and array of pairs. The expected
+ * position is returned inverted if it was not found, the
+ * position it whould have upon be inserted, otherwise the
+ * position is returned as an index if the mode does not
+ * specify anything else.
+ */
+ public static £(fun "long[][]" indexOf "${T}[] items, ${Tarray} array, SortOrder order, SearchMode mode, int start")
+ {
+ return indexOf(items, array, order, mode, start, array.length - 1£{Targ_name});
+ }
+
+ /**
+ * Find the indices of multiple items in a list, with time
+ * complexity 𝓞(log n + m) and memory complexity 𝓞(log m)
+ *
+ * @param items Sorted list of unique items for which to search, the number
+ * of elements is named ‘m’ in the complexity analysis
+ * @param array Sorted list in which to search, the number of elements
+ * is named ‘n’ in the complexity analysis
+ * @param order The lists' element order
+ * @param mode The search mode
+ * @param start The index of the first position to search in the array
+ * @param end The index after the last position to search in the array
+ * @return Two arrays of integer arrays, the 0:th being the indices
+ * of items, the 1:th being their positions. That is,
+ * two separate arrays, not and array of pairs. The expected
+ * position is returned inverted if it was not found, the
+ * position it whould have upon be inserted, otherwise the
+ * position is returned as an index if the mode does not
+ * specify anything else.
+ */
+ public static £(fun "long[][]" indexOf "${T}[] items, ${Tarray} array, SortOrder order, SearchMode mode, int start, int end")
+ {
if (mode != SearchMode.FIND_ANY)
throw new Error("Mode not implemented"); /* TODO */
if (order != SortOrder.ASCENDING)
@@ -122,7 +171,6 @@ public class MultibinarySearch
if ((m & 0x00000002) != 0) { lb_m += 1; }
int[][] minomax = new int[4][lb_m];
- int n = array.length - 1;
m = items.length - 1;
int rc_i = 0;
@@ -131,8 +179,8 @@ public class MultibinarySearch
minomax[0][mm_i] = 0;
minomax[1][mm_i] = m;
- minomax[2][mm_i] = 0;
- minomax[3][mm_i++] = n;
+ minomax[2][mm_i] = start;
+ minomax[3][mm_i++] = end - 1;
while (mm_i-- > 0)
{