1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
|
# -*- python -*-
# A moderate xpybar configuration example that has a few monitors
# that are updates continuously, and rat support
import time
import threading
from util import *
from plugins.clock import Clock
from plugins.cpu import CPU
from plugins.mem import Memory
from plugins.network import Network
from plugins.ping import Ping
from plugins.alsa import ALSA
from plugins.moc import MOC
import Xlib.protocol.event
OUTPUT = 0
'''
:int The index of the monitor that the panel is displayed on
'''
YPOS = 24
'''
:int The panels position relative to the upper or lower edge
of the monitor (which is determined by `TOP`)
'''
TOP = True
'''
:bool True: `YPOS` is relative to the upper edge
False: `YPOS` is relative to the lower edge
'''
TICKS_PER_SECOND = 4
'''
:float The number of times per second the panel is updated
'''
time_format = '%Y-(%m)%b-%d %T, %a w%V, %Z'
'''
:str The format the clock is displayed in
'''
my_clock = Clock(format = time_format, utc = False,
sync_to = Clock.SECONDS / TICKS_PER_SECOND)
'''
:Clock The clock monitor
'''
my_cpu = '...'
'''
:str The output of the CPU monitor
'''
my_mem = '...'
'''
:str The output of the RAM monitor
'''
my_swp = '...'
'''
:str The output of the swap memory monitor
'''
my_shm = '...'
'''
:str The output of the shared memory monitor
'''
my_net = 'Net: ...'
'''
:str The output of the network monitor
'''
my_snd = '...'
'''
:str The output of the audio monitor
'''
my_moc = '...'
'''
:str The output of the music on console monitor
'''
limited = lambda v : min(max(int(v + 0.5), 0), 100)
'''
:(float)→int Round an float to nearest integer and limit the range to [0, 100]
'''
len_ = len
len = lambda string : colour_aware_len(string, len_)
###############################################################################################################
###############################################################################################################
# CPU monitor
def cpu():
'''
Update CPU usage
'''
global my_cpu, last_cpus_idle, last_cpus_total, last_cpu_idle, last_cpu_total
try:
cpu_ = CPU()
now_cpu_idle, now_cpus_idle = cpu_.cpu[CPU.idle], [cpu[CPU.idle] for cpu in cpu_.cpus]
now_cpu_total, now_cpus_total = sum(cpu_.cpu), [sum(cpu) for cpu in cpu_.cpus]
if len(now_cpus_idle) > len(last_cpus_idle):
last_cpus_idle += now_cpus_idle[len(last_cpus_idle):]
last_cpus_total += now_cpus_total[len(last_cpus_total):]
cpus = zip(now_cpus_idle, now_cpus_total, last_cpus_idle, last_cpus_total)
cpus = ' '.join([cpu_colourise(cpu_usage(*c)) for c in cpus])
cpu_ = cpu_colourise(cpu_usage(now_cpu_idle, now_cpu_total, last_cpu_idle, last_cpu_total))
cpu_ = '%s : %s' % (cpus, cpu_)
last_cpus_idle, last_cpus_total = now_cpus_idle, now_cpus_total
last_cpu_idle, last_cpu_total = now_cpu_idle, now_cpu_total
my_cpu = cpu_
except:
my_cpu = '...'
def cpu_usage(now_idle, now_total, last_idle, last_total):
'''
Calculate the CPU usage
@param now_idle:int Time spent in the idle task, at the current measurement
@param now_total:int Total time that has passed, at the current measurement
@param last_idle:int Time spent in the idle task, at the last measurement
@param last_total:int Total time that has passed, at the last measurement
@return :float? The CPU usage, `None` if not time has passed
'''
total = now_total - last_total
idle = now_idle - last_idle
return None if total == 0 else (total - idle) * 100 / total
def cpu_colourise_(value):
'''
Colourise a CPU usage value
@param value:int The CPU usage
@return :str `value` coloured with an appropriate colour
'''
if value is None:
return '--%'
elif value >= 100:
return '\033[31m100\033[0m'
colour = '39'
if value >= 5: colour = '32'
if value >= 50: colour = '33'
if value >= 90: colour = '31'
return '\033[%sm%2i\033[0m%%' % (colour, value)
cpu_none = cpu_colourise_(None)
'''
:str Cache for the coloursation of the value `None`
'''
cpu_coloured = tuple(cpu_colourise_(i) for i in range(101))
'''
:tuple<str> Cache of colourised CPU usage values
'''
cpu_colourise = lambda v : cpu_none if v is None else cpu_coloured[limited(v)]
'''
:(value:int)→str Cached version of `cpu_colourise_`
'''
last_cpu_idle = 0
'''
:int Time spent in the idle task, at the last measurement, on all CPU-threads
'''
last_cpu_total = 0
'''
:int Total time that has passed, at the last measurement, on all CPU-threads
'''
last_cpus_idle = []
'''
:int Time spent in the idle task, at the last measurement, for each CPU-thread
'''
last_cpus_total = []
'''
:int Total time that has passed, at the last measurement, for each CPU-thread
'''
###############################################################################################################
# Memory usage monitor
def mem():
'''
Update memory usage
'''
global my_mem, my_swp, my_shm
try:
memory = Memory()
if memory.mem_total == 0:
my_mem = '---'
my_shm = '---'
else:
my_mem = memory_coloured[limited(memory.mem_used * 100 / memory.mem_total)]
my_shm = memory_coloured[limited(memory.shmem * 100 / memory.mem_total)]
if memory.swap_total == 0:
my_swp = 'off'
else:
my_swp = memory_coloured[limited(memory.swap_used * 100 / memory.swap_total)]
except:
my_mem = '...'
my_swp = '...'
my_shm = '...'
def memory_colourise(value):
'''
Colourise a memory usage value
@param value:int The memory usage
@return :str `value` coloured with an appropriate colour
'''
if value >= 100:
return '\033[31m100\033[0m'
colour = '39'
if value > 30: colour = '32'
if value > 50: colour = '33'
if value > 80: colour = '31'
return '\033[%sm%i\033[0m%%' % (colour, value)
memory_coloured = tuple(memory_colourise(i) for i in range(101))
'''
:tuple<str> Cache of colourised memory usage values
'''
###############################################################################################################
# Network monitor
def net():
'''
Update network usage and latency
'''
global my_net, net_time, net_last
try:
net_now = time.monotonic()
net_tdiff, net_time = net_now - net_time, net_now
devs = Network('lo').devices
def kbps(device, direction):
'''
Get the number of kilobits transmitted or received per second since the last measurement
@param device:str The network device
@param direction:str 'rx' for received data, 'tx' for transmitted data
@return :str The number of kilobits transmitted or received per second, colourised
'''
direction += '_bytes'
value = devs[device][direction]
if device in net_last:
value -= net_last[device][direction]
else:
value = 0
value /= 128 * net_tdiff
return network_colourise(value)
def KBps(device, direction):
'''
Get the number of kilobytes transmitted or received per second since the last measurement
@param device:str The network device
@param direction:str 'rx' for received data, 'tx' for transmitted data
@return :float The number of kilobytes transmitted or received per second
'''
direction += '_bytes'
value = devs[device][direction]
if device in net_last:
value -= net_last[device][direction]
else:
value = 0
value /= 1024 * net_tdiff
return value
my_net = ' '.join('%s: %skbps(%.0fKB/s)↓ %skbps(%.0fKB/s)↑ %s' %
(dev, kbps(dev, 'rx'), KBps(dev, 'rx'), kbps(dev, 'tx'), KBps(dev, 'tx'), ping(dev))
for dev in devs)
net_last = devs
except:
my_net = 'Net: ...'
def network_colourise(value):
'''
Colourise a network usage value
@param value:int The network usage, in kilobits per second
@return :str `value` coloured with an appropriate colour
'''
colour = '39'
if value > 40: colour = '32'
if value > 8000: colour = '33'
if value > 60000: colour = '31'
return '\033[%sm%3.0f\033[0m' % (colour, value)
def ping(device):
'''
Get the latency for a network device
@param device:str The device
@return :str The latency, colourised
'''
try:
monitor = my_ping[device][0]
monitor.semaphore.acquire()
try:
latency = monitor.get_latency(True)[1]
droptime = monitor.dropped_time(True)
if droptime:
return '\033[31m%4is\033[00m' % droptime
elif latency is None:
return '\033[31mdrop?\033[00m'
colour = '31'
if latency < 5: colour = '32'
elif latency < 10: colour = '00'
elif latency < 20: colour = '33'
return '\033[%sm%5.2f\033[00m' % (colour, latency)
finally:
monitor.semaphore.release()
except:
return '...'
my_ping = Ping(targets = Ping.get_nics(), interval = 10).monitors
'''
:Ping Latency monitor
'''
net_time = time.monotonic()
'''
:float The time of the last reading
'''
net_last = {}
'''
:dict<str, dict<str, int>> Readings from the update
'''
###############################################################################################################
# Audio monitor
def snd(add_missing_mixers = True):
'''
Update audio volume
@param add_missing_mixers:bool Whether missing mixers should be added
'''
global my_snd, stops_alsa
stops_ = []
if add_missing_mixers:
try:
for i, mixer in my_alsa:
if mixer is None:
my_alsa[i] = alsa(*(mixers[i]))
except:
pass
try:
offset = 0
my_snd_ = []
for mixer in my_alsa:
if mixer is not None:
text = snd_read_m(mixer)
my_snd_.append(text)
text_len = len(text)
mixer_stops = [0, text_len]
mixer_name_len, text = len(text.split(': ')[0]), ': '.join(text.split(': ')[1:])
for i in range((len(text) + 1) // 4):
mixer_stops.append(mixer_name_len + 2 + 4 * i + 0)
mixer_stops.append(mixer_name_len + 2 + 4 * i + 3)
stops_.append(tuple(offset + stop for stop in mixer_stops))
offset += text_len + 3
else:
stops_.append((-1, -1))
my_snd = ' │ '.join(my_snd_)
stops_alsa = stops_
except:
my_snd = '...'
stops_alsa = [(-1, -1)] * len(my_alsa)
def alsa(cardindex, mixername):
'''
The a volume controller for a mixer
@param cardindex:int The index of the audio card
@param mixername:str The name of the mixer
@return :Alsa? Volume controller, `None` if the mixers is not available
'''
try:
return ALSA(cardindex, mixername)
except:
return None
snd_text_v = lambda v : '--%' if v is None else ('%2i%%' % v)[:3]
'''
:(v:int?)→str Convert a volume integer to a volume str, `None` as input means it is muted
'''
snd_read_m = lambda m : '%s: %s' % (m.mixername, ' '.join(snd_text_v(v) for v in m.get_volume()))
'''
:(m:ALSA)→str Create a string representing the current volumes on a mixer
'''
mixers = ((0, 'Master'), (0, 'Headphone'), (0, 'Speaker'), (0, 'PCM'))
'''
:tuple<(cardindex:int, mixername:str)> List of mixers that should be monitored
'''
my_alsa = [alsa(card, mixer) for card, mixer in mixers]
'''
:list<ALSA> ALSA volume controllers
'''
stops_alsa = [(-1, -1)] * len(my_alsa)
'''
:itr<itr<int>> Map from mixer index to location of substring in the monitor display.
The first element is where the mixer starts, and the second element is
where the mixer stops. Each mixer may have 2 additional elements for each
channel, in that case that are starts and stops, alternating.
'''
###############################################################################################################
# Music on console monitor
my_moc = '> || [] |< >|'
moc_controller = MOC()
'''
:MOC The MOC controller
'''
###############################################################################################################
###############################################################################################################
functions = [ my_clock.read
, lambda : my_cpu
, lambda : my_mem
, lambda : my_swp
, lambda : my_shm
, lambda : my_net
, lambda : my_snd
, lambda : my_moc
]
'''
:itr<()→str> Functions that are evulated and replaces the %s:s in
`pattern` every time to panel is redrawn
'''
pattern = [ [ '%n%s%n │ %nCpu: %s%n │ %nMem: %s%n │ %nSwp: %s%n │ %nShm: %s%n'
, '%n%s%n │ %n%s%n │ %nMoc: %s%n'
]
]
'''
:itr<itr<str>> The layout of the monitors on the panel
'''
async_fun = [ Sometimes(cpu, TICKS_PER_SECOND)
, Sometimes(mem, TICKS_PER_SECOND)
, Sometimes(net, TICKS_PER_SECOND)
, Sometimes(snd, TICKS_PER_SECOND * 3)
]
'''
:itr<()→void> Monitors that are be update asynchronously
'''
semaphore = threading.Semaphore()
'''
:Semaphore Semaphore used to make sure functions do not step on each others' toes
'''
HEIGHT_PER_LINE = 12
'''
:int The height of each line
'''
HEIGHT = len(pattern) * HEIGHT_PER_LINE
'''
:int The height of the panel
'''
stops = [-1] * (2 * len(functions))
'''
:itr<int> Locations of stops marked by `%n` in `pattern`
'''
pattern = '\n'.join('\0'.join(p) for p in pattern)
start_ = start
def start():
'''
Invoked when it is time to create panels and map them
'''
# Create panel, clear it, and synchronise
start_()
bar.clear()
get_display().flush()
def update_sys():
'''
Update data asynchronously, but do not redraw the panel
'''
[f() for f in async_fun]
def update_clock():
'''
Update the clock, and redraw the panel
'''
if semaphore.acquire(blocking = False):
try:
for f in functions:
if isinstance(f, Clocked):
f(True)
finally:
semaphore.release()
bar.invalidate()
# Start monitoring
async(lambda : watch(1 / TICKS_PER_SECOND, update_sys), name = 'sys')
async(lambda : my_clock.continuous_sync(update_clock), name = 'clock')
def redraw():
'''
Invoked when redraw is needed
'''
global stops
if semaphore.acquire(blocking = False):
try:
(values, stops) = sprintf(pattern, *(f() for f in functions))
bar.partial_clear(0, bar.width, 10, 0, 2, values)
bar.draw_coloured_splitted_text(0, bar.width, 10, 0, 2, values)
finally:
semaphore.release()
LEFT_BUTTON = 1
'''
:int The index of the left button
'''
MIDDLE_BUTTON = 2
'''
:int The index of the middle button
'''
RIGHT_BUTTON = 3
'''
:int The index of the right button
'''
SCROLL_UP = 4
'''
:int The index of the psuedo-button for scrolling upwards
'''
SCROLL_DOWN = 5
'''
:int The index of the psuedo-button for scrolling downwards
'''
FORWARD_BUTTON = 8 # X1
'''
:int The index of the forward button, also known as X1
'''
BACKWARD_BUTTON = 9 # X2
'''
:int The index of the backward button, also known as X2
'''
def unhandled_event(e):
'''
Invoked when an unrecognised even is polled,
feel free to replace this completely
@param e The event
'''
if isinstance(e, Xlib.protocol.event.ButtonPress):
y = e.event_y // HEIGHT_PER_LINE
lx = e.event_x // bar.font_width
rx = (bar.width - e.event_x) // bar.font_width
button = e.detail
button_pressed(y, lx, rx, button)
def button_pressed(y, lx, rx, button):
'''
Called from `unhandled_event` when a button on a pointer device is pressed
@param y:int The line that the pointer is on, zero based
@param lx:int The column the pointer is on, relative to the left edge, zero based
@param rx:int The column the pointer is on, relative to the right edge, zero based
@param button:int The button on the device that is pressed
'''
# Stops at the left side of line 0
stops_l0 = stops[0 : 10]
# Stops at the right side of line 0
stops_r0 = [stops[15] - x for x in stops[10 : 16]]
try:
if y == 0:
if stops_l0[0] <= lx < stops_l0[1]: # clock
if button == LEFT_BUTTON:
Clock.__init__(my_clock, time_format, not my_clock.utc, my_clock.sync_to)
bar.invalidate()
elif stops_l0[2] <= lx < stops_l0[3]: # cpu
pass
elif stops_l0[4] <= lx < stops_l0[5]: # mem
pass
elif stops_l0[6] <= lx < stops_l0[7]: # swp
pass
elif stops_l0[8] <= lx < stops_l0[9]: # shm
pass
elif stops_r0[0] > rx >= stops_r0[1]: # net
pass
elif stops_r0[2] > rx >= stops_r0[3]: # snd
button_pressed_mixer(stops_r0[2] - rx - 1, button)
elif stops_r0[4] > rx >= stops_r0[5]: # moc
mx = stops_r0[4] - rx - 1 - 5
if button == LEFT_BUTTON:
if 0 <= mx < 1: async(lambda : moc_controller.play().wait()) # >
elif 2 <= mx < 4: async(lambda : moc_controller.toggle_pause().wait()) # ||
elif 5 <= mx < 7: async(lambda : moc_controller.stop().wait()) # []
elif 8 <= mx < 10: async(lambda : moc_controller.previous().wait()) # |<
elif 11 <= mx < 13: async(lambda : moc_controller.next().wait()) # >|
elif button == FORWARD_BUTTON: async(lambda : moc_controller.next().wait())
elif button == BACKWARD_BUTTON: async(lambda : moc_controller.previous().wait())
elif button == SCROLL_UP: async(lambda : moc_controller.seek(+5).wait())
elif button == SCROLL_DOWN: async(lambda : moc_controller.seek(-5).wait())
except:
pass
def button_pressed_mixer(mx, button):
'''
Called from `button_pressed` when the user is touched the audio mixer monitor
@param mx:int The column the pointer is at right-relative to the left edge of the mixer display
@param button:int The button on the device that is pressed
'''
for mixer_index, mixer_stops in enumerate(stops_alsa):
if mixer_stops[0] <= mx < mixer_stops[1]:
# Get channel
channel = ALSA.ALL_CHANNELS
if not button == RIGHT_BUTTON: # not (balance channels)
mixer_stops = mixer_stops[2:]
for channel_index in range(len(mixer_stops) // 2):
if mixer_stops[channel_index * 2 + 0] <= mx < mixer_stops[channel_index * 2 + 1]:
channel = channel_index
break
# Get mixer
mixer = my_alsa[mixer_index]
# Get volumes and all selected channels
volumes = mixer.get_volume()
channels = list(range(len(volumes))) if channel == ALSA.ALL_CHANNELS else [channel]
# Filter volumes to selected channels
volumes = [volume for c, volume in enumerate(volumes) if c in channels]
# Control the volume
if button == LEFT_BUTTON: # toggle mute
mute = not any(volume is None for volume in volumes)
[mixer.set_mute(mute, c) for c in channels]
elif button == RIGHT_BUTTON: # balance channels
mixer.set_volume(sum(volumes) // len(volumes), ALSA.ALL_CHANNELS)
elif button == SCROLL_UP: # turn up the volume
[mixer.set_volume(limited(v + 5), c) for c, v in zip(channels, volumes)]
elif button == SCROLL_DOWN: # turn down the volume
[mixer.set_volume(limited(v - 5), c) for c, v in zip(channels, volumes)]
# Update the panel
snd(False)
bar.invalidate()
break
|