aboutsummaryrefslogtreecommitdiffstats
path: root/src/solar_python.py
blob: 80dae4a7892b019870933a3293aa49d9e65b4ae5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
# solar-python — Solar data calculation and prediction library for Python
# Copyright © 2014, 2015  Mattias Andrée (maandree@member.fsf.org)
# 
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
# 
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.



SOLAR_APPARENT_RADIUS = 32.0 / 60.0
'''
:float  Approximate apparent size of the Sun in degrees
'''


SOLAR_ELEVATION_PRESUNSET_POSTSUNRISE = 32.0 / 60.0
'''
:float  The Sun's elevation the beginning of sunset and
        end of sunrise, measured in degrees
'''

SOLAR_ELEVATION_SUNSET_SUNRISE = -32.0 / 60.0
'''
:float  The Sun's elevation the (end of) at sunset and
        (beginning of) sunrise, measured in degrees
'''

SOLAR_ELEVATION_CIVIL_DUSK_DAWN = -6.0
'''
:float  The Sun's elevation at civil dusk and civil
        dawn, measured in degrees
'''

SOLAR_ELEVATION_NAUTICAL_DUSK_DAWN = -12.0
'''
:float  The Sun's elevation at nautical dusk and
        nautical dawn, measured in degrees
'''

SOLAR_ELEVATION_AMATEUR_ASTRONOMICAL_DUSK_DAWN = -15.0
'''
:float  The Sun's elevation at amateur astronomical dusk
        and amateur astronomical dawn, measured in degrees
'''

SOLAR_ELEVATION_ASTRONOMICAL_DUSK_DAWN = -18.0
'''
:float  The Sun's elevation at astronomical dusk
        and astronomical dawn, measured in degrees
'''

SOLAR_ELEVATION_RANGE_TWILIGHT = (-18.0, 0.0)
'''
:(float, float)  The Sun's lowest and highest elevation during
                 all periods of twilight, measured in degrees
'''

SOLAR_ELEVATION_RANGE_CIVIL_TWILIGHT = (-6.0, SOLAR_ELEVATION_SUNSET_SUNRISE)
'''
:(float, float)  The Sun's lowest and highest elevation
                 during civil twilight, measured in degrees
'''

SOLAR_ELEVATION_RANGE_NAUTICAL_TWILIGHT = (-12.0, SOLAR_ELEVATION_SUNSET_SUNRISE)
'''
:(float, float)  The Sun's lowest and highest elevation
                 during nautical twilight, measured in degrees
'''

SOLAR_ELEVATION_RANGE_ASTRONOMICAL_TWILIGHT = (-18.0, SOLAR_ELEVATION_SUNSET_SUNRISE)
'''
:(float, float)  The Sun's lowest and highest elevation during
                 astronomical twilight, measured in degrees
'''

SOLAR_ELEVATION_RANGE_AMATEUR_ASTRONOMICAL_TWILIGHT = (-18.0, -15.0)
'''
:(float, float)  The Sun's lowest and highest elevation during
                 amateur astronomical twilight, measured in degrees
'''

SOLAR_ELEVATION_RANGE_GOLDEN_HOUR = (10.0, 12.0)
'''
:(float, float)  The Sun's lowest and highest elevation during
                 the golden "hour" (also known as magic hour),
                 measured in degrees. These elevations are
                 approximate.
'''



# The following functions are used to calculate the result for `sun`
# (most of them) but could be used for anything else. There name is
# should tell you enough, `t` (and `noon`) is in Julian Centuries
# except for in the convertion methods.


def julian_day_to_epoch(t):
    '''
    Converts a Julian Day timestamp to a POSIX time timestamp
    
    @param   t:float  The time in Julian Days
    @return  :float   The time in POSIX time
    '''
    return (t - 2440587.5) * 86400.0


def epoch_to_julian_day(t):
    '''
    Converts a POSIX time timestamp to a Julian Day timestamp
    
    @param   t:float  The time in POSIX time
    @return  :float   The time in Julian Days
    '''
    return t / 86400.0 + 2440587.5


def julian_day_to_julian_centuries(t):
    '''
    Converts a Julian Day timestamp to a Julian Centuries timestamp
    
    @param   t:float  The time in Julian Days
    @return  :float   The time in Julian Centuries
    '''
    return (t - 2451545.0) / 36525.0


def julian_centuries_to_julian_day(t):
    '''
    Converts a Julian Centuries timestamp to a Julian Day timestamp
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The time in Julian Days
    '''
    return t * 36525.0 + 2451545.0


def epoch_to_julian_centuries(t):
    '''
    Converts a POSIX time timestamp to a Julian Centuries timestamp
    
    @param   t:float  The time in POSIX time
    @return  :float   The time in Julian Centuries
    '''
    return julian_day_to_julian_centuries(epoch_to_julian_day(t))


def julian_centuries_to_epoch(t):
    '''
    Converts a Julian Centuries timestamp to a POSIX time timestamp
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The time in POSIX time
    '''
    return julian_day_to_epoch(julian_centuries_to_julian_day(t))


def epoch():
    '''
    Get current POSIX time
    
    @return  :float  The current POSIX time
    '''
    import time
    return time.time()


def julian_day():
    '''
    Get current Julian Day time
    
    @return  :float  The current Julian Day time
    '''
    return epoch_to_julian_day(epoch())


def julian_centuries():
    '''
    Get current Julian Centuries time (100 Julian days since J2000)
    
    @return  :float  The current Julian Centuries time
    '''
    return epoch_to_julian_centuries(epoch())


def radians(deg):
    '''
    Convert an angle from degrees to radians
    
    @param   deg:float  The angle in degrees
    @return  :float     The angle in radians
    '''
    import math
    return deg * math.pi / 180


def degrees(rad):
    '''
    Convert an angle from radians to degrees
    
    @param   rad:float  The angle in radians
    @return  :float     The angle in degrees
    '''
    import math
    return rad * 180 / math.pi


def sun_geometric_mean_longitude(t):
    '''
    Calculates the Sun's geometric mean longitude
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The Sun's geometric mean longitude in radians
    '''
    return radians((0.0003032 * t ** 2 + 36000.76983 * t + 280.46646) % 360)
    # CANNIBALISERS:
    #     The result of this function should always be positive, this
    #     means that after division modulo 360 but before `radians`,
    #     you will need to add 360 if the value is negative. This can
    #     only happen if `t` is negative, which can only happen for date
    #     times before 2000-(01)Jan-01 12:00:00 UTC par division modulo
    #     implementations with the signess of at least the left operand.
    #     More precively, it happens between circa 1970-(01)Jan-11
    #     16:09:02 UTC and circa 374702470660351740 seconds before
    #     January 1, 1970 00:00 UTC, which is so far back in time
    #     it cannot be reliable pinned down to the right year, but it
    #     is without a shadow of a doubt looooong before the Earth
    #     was formed, is right up there with the age of the Milky Way
    #     and the universe itself.


def sun_geometric_mean_anomaly(t):
    '''
    Calculates the Sun's geometric mean anomaly
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The Sun's geometric mean anomaly in radians
    '''
    return radians(-0.0001537 * t ** 2 + 35999.05029 * t + 357.52911)


def earth_orbit_eccentricity(t):
    '''
    Calculates the Earth's orbit eccentricity
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The Earth's orbit eccentricity
    '''
    return -0.0000001267 * t ** 2 - 0.000042037 * t + 0.016708634


def sun_equation_of_centre(t):
    '''
    Calculates the Sun's equation of the centre, the difference between
    the true anomaly and the mean anomaly
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The Sun's equation of the centre, in radians
    '''
    import math
    a = sun_geometric_mean_anomaly(t)
    rc = math.sin(1 * a) * (-0.000014 * t ** 2 - 0.004817 * t + 1.914602)
    rc += math.sin(2 * a) * (-0.000101 * t + 0.019993)
    rc += math.sin(3 * a) * 0.000289
    return radians(rc)


def sun_real_longitude(t):
    '''
    Calculates the Sun's real longitudinal position
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The longitude, in radians
    '''
    rc = sun_geometric_mean_longitude(t)
    return rc + sun_equation_of_centre(t)


def sun_apparent_longitude(t):
    '''
    Calculates the Sun's apparent longitudinal position
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The longitude, in radians
    '''
    import math
    rc = degrees(sun_real_longitude(t)) - 0.00569
    rc -= 0.00478 * math.sin(radians(-1934.136 * t + 125.04))
    return radians(rc)


def mean_ecliptic_obliquity(t):
    '''
    Calculates the mean ecliptic obliquity of the Sun's
    apparent motion without variation correction
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The uncorrected mean obliquity, in radians
    '''
    rc = 0.001813 * t ** 3 - 0.00059 * t ** 2 - 46.815 * t + 21.448
    rc = 26 + rc / 60
    rc = 23 + rc / 60
    return radians(rc)


def corrected_mean_ecliptic_obliquity(t):
    '''
    Calculates the mean ecliptic obliquity of the Sun's
    apparent motion with variation correction
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The mean obliquity, in radians
    '''
    import math
    rc = -1934.136 * t + 125.04
    rc = 0.00256 * math.cos(radians(rc))
    rc += degrees(mean_ecliptic_obliquity(t))
    return radians(rc)


def solar_declination(t):
    '''
    Calculates the Sun's declination
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The Sun's declination, in radians
    '''
    import math
    rc = math.sin(corrected_mean_ecliptic_obliquity(t))
    rc *= math.sin(sun_apparent_longitude(t))
    return math.asin(rc)


def equation_of_time(t):
    '''
    Calculates the equation of time, the discrepancy
    between apparent and mean solar time
    
    @param   t:float  The time in Julian Centuries
    @return  :float   The equation of time, in degrees
    '''
    import math
    l = sun_geometric_mean_longitude(t)
    e = earth_orbit_eccentricity(t)
    m = sun_geometric_mean_anomaly(t)
    y = corrected_mean_ecliptic_obliquity(t)
    y = math.tan(y / 2) ** 2
    rc = y * math.sin(2 * l)
    rc += (4 * y * math.cos(2 * l) - 2) * e * math.sin(m)
    rc -= 0.5 * y ** 2 * math.sin(4 * l)
    rc -= 1.25 * e ** 2 * math.sin(2 * m)
    return 4 * degrees(rc)


def hour_angle_from_elevation(latitude, declination, elevation):
    '''
    Calculates the solar hour angle from the Sun's elevation
    
    @param   longitude:float    The longitude in degrees eastwards
                                from Greenwich, negative for westwards
    @param   declination:float  The declination, in radians
    @param   elevation:float    The Sun's elevation, in radians
    @return  :float             The solar hour angle, in radians
    '''
    import math
    if elevation == 0:
        return 0
    rc = math.cos(abs(elevation))
    rc -= math.sin(radians(latitude)) * math.sin(declination)
    rc /= math.cos(radians(latitude)) * math.cos(declination)
    rc = math.acos(rc)
    return -rc if (rc < 0) == (elevation < 0) else rc


def elevation_from_hour_angle(latitude, declination, hour_angle):
    '''
    Calculates the Sun's elevation from the solar hour angle
    
    @param   longitude:float    The longitude in degrees eastwards
                                from Greenwich, negative for westwards
    @param   declination:float  The declination, in radians
    @param   hour_angle:float   The solar hour angle, in radians
    @return  :float             The Sun's elevation, in radians
    '''
    import math
    rc = math.cos(radians(latitude))
    rc *= math.cos(hour_angle) * math.cos(declination)
    rc += math.sin(radians(latitude)) * math.sin(declination)
    return math.asin(rc)


def time_of_solar_noon(t, longitude):
    '''
    Calculates the time of the closest solar noon
    
    @param   t:float          A time close to the sought time,
                              in Julian Centuries
    @param   longitude:float  The longitude in degrees eastwards from
                              Greenwich, negative for westwards
    @return  :float           The time, in Julian Centuries,
                              of the closest solar noon
    '''
    t, rc = julian_centuries_to_julian_day(t), longitude
    for (k, m) in ((-360, 0), (1440, -0.5)):
        rc = julian_day_to_julian_centuries(t + m + rc / k)
        rc = 720 - 4 * longitude - equation_of_time(rc)
    return rc


def time_of_solar_elevation(t, noon, latitude, longitude, elevation):
    '''
    Calculates the time the Sun has a specified apparent
    elevation at a geographical position
    
    @param   t:float          A time close to the sought time,
                              in Julian Centuries
    @param   noon:float       The time of the closest solar noon
    @param   latitude:float   The latitude in degrees northwards from
                              the equator, negative for southwards
    @param   longitude:float  The longitude in degrees eastwards from
                              Greenwich, negative for westwards
    @param   elevation:float  The solar elevation, in radians
    @return  :float           The time, in Julian Centuries,
                              of the specified elevation
    '''
    rc = noon
    rc, et = solar_declination(rc), equation_of_time(rc)
    rc = hour_angle_from_elevation(latitude, rc, elevation)
    rc = 720 - 4 * (longitude + degrees(rc)) - et
    
    rc = julian_day_to_julian_centuries(julian_centuries_to_julian_day(t) + rc / 1440)
    rc, et = solar_declination(rc), equation_of_time(rc)
    rc = hour_angle_from_elevation(latitude, rc, elevation)
    rc = 720 - 4 * (longitude + degrees(rc)) - et
    return rc


def solar_elevation_from_time(t, latitude, longitude):
    '''
    Calculates the Sun's elevation as apparent
    from a geographical position
    
    @param   t:float          The time in Julian Centuries
    @param   latitude:float   The latitude in degrees northwards from
                              the equator, negative for southwards
    @param   longitude:float  The longitude in degrees eastwards from
                              Greenwich, negative for westwards
    @return  :float           The Sun's apparent elevation at the specified
                              time as seen from the specified position,
                              measured in radians
    '''
    rc = julian_centuries_to_julian_day(t)
    rc = (rc - float(int(rc + 0.5)) - 0.5) * 1440
    rc = 720 - rc - equation_of_time(t)
    rc = radians(rc / 4 - longitude)
    return elevation_from_hour_angle(latitude, solar_declination(t), rc)


def solar_elevation(latitude, longitude, t = None):
    '''
    Calculates the Sun's elevation as apparent
    from a geographical position
    
    @param   latitude:float   The latitude in degrees northwards from
                              the equator, negative for southwards
    @param   longitude:float  The longitude in degrees eastwards from
                              Greenwich, negative for westwards
    @param   t:float?         The time in Julian Centuries, `None`
                              for the current time
    @return  :float           The Sun's apparent elevation at the specified
                              time as seen from the specified position,
                              measured in degrees
    '''
    rc = julian_centuries() if t is None else t
    rc = solar_elevation_from_time(rc, latitude, longitude)
    return degrees(rc)



def have_sunrise_and_sunset(latitude, t = None):
    '''
    Determine whether solar declination currently is
    so that there can be sunrises and sunsets. If not,
    you either have 24-hour daytime or 24-hour nighttime.
    
    @param   latitude:float  The latitude in degrees northwards from
                             the equator, negative for southwards
    @param   t:float?        The time in Julian Centuries, `None`
                             for the current time
    @return                  Whether there can be sunrises and
                             sunsets where you are located
    '''
    t = julian_centuries() if t is None else t
    d = degrees(solar_declination(t))
    ## Convert everything to the Northern hemisphere
    latitude = abs(latitude)
    if d >= 0:
        ## Northern summer
        return -90 + d < latitude < 90 - d
    else:
        ## Northern winter
        return -90 - d < latitude < 90 + d


def is_summer(latitude, t = None):
    '''
    Determine whether it is summer
    
    @param   latitude:float  The latitude in degrees northwards from
                             the equator, negative for southwards
    @param   t:float?        The time in Julian Centuries, `None`
                             for the current time
    @return                  Whether it is summer on the hemisphere
                             you are located on
    '''
    t = julian_centuries() if t is None else t
    d = solar_declination(t)
    return (d > 0) == (latitude > 0)


def is_winter(latitude, t = None):
    '''
    Determine whether it is winter
    
    @param   latitude:float  The latitude in degrees northwards from
                             the equator, negative for southwards
    @param   t:float?        The time in Julian Centuries, `None`
                             for the current time
    @return                  Whether it is winter on the hemisphere
                             you are located on
    '''
    t = julian_centuries() if t is None else t
    d = solar_declination(t)
    return not ((d > 0) == (latitude > 0))



def solar_prediction(delta, requested, fun, epsilon = 0.000001, span = 0.01, t = None):
    '''
    Predict the time point of the next or previous
    time an arbitrary condition is meet
    
    @param   delta:float          Iteration step size, negative for past
                                  event, positive for future event
    @param   requested:float      The value returned by `fun` for which to
                                  calculate the time point of occurrence
    @param   fun:(t:float)→float  Function that calculate the data of interest
    @param   epsilon:float        The tolerance for the result
    @param   span:float           The number of Julian Centuries (0,01 for
                                  one year) to restrict the search to
    @param   t:float?             The time in Julian Centuries, `None` for
                                  the current time
    @return  :float?              The calculated time point, `None` if none
                                  were found within the specified time span
    '''
    fun_ = lambda t : fun(t) - requested
    t = julian_centuries() if t is None else t
    t1 = t2 = t
    v1 = v0 = fun_(t)
    
    # Predicate time point to within a small time span
    while True:
        if abs(t2 - t) > span:
            return None
        t2 += delta
        v2 = fun_(t2)
        if (v1 <= 0 <= v2) or ((0 >= v1 >= v2) and (0 <= v0)):
            break
        if (v1 >= 0 >= v2) or ((0 <= v1 <= v2) and (0 >= v0)):
            break
        t1 = t2
        v2 = v1
    
    # Binary search the small time span for the exact time point
    for _itr in range(1000):
        tm = (t1 + t2) / 2
        v1 = fun_(t1)
        v2 = fun_(t2)
        vm = fun_(tm)
        if abs(v1 - v2) < epsilon:
            return tm
        if v1 < v2:
            if 0 < vm:
                t2 = tm
            else:
                t1 = tm
        elif v1 > v2:
            if 0 > vm:
                t2 = tm
            else:
                t1 = tm
    return tm



def future_past_equinox(delta, t = None):
    '''
    Predict the time point of the next or previous equinox
    
    @param   delta:float  Iteration step size, negative for
                          past event, positive for future event
    @param   t:float?     The time in Julian Centuries, `None`
                          for the current time
    @return  :float       The calculated time point
    '''
    return solar_prediction(delta, 0, solar_declination, t = t)


def future_equinox(t = None):
    '''
    Predict the time point of the next equinox
    
    @param   t:float?  The time in Julian Centuries, `None`
                       for the current time
    @return  :float    The calculated time point
    '''
    return future_past_equinox(0.01 / 2000, t)
    

def past_equinox(t = None):
    '''
    Predict the time point of the previous equinox
    
    @param   t:float?  The time in Julian Centuries, `None`
                       for the current time
    @return  :float    The calculated time point
    '''
    return future_past_equinox(0.01 / -2000, t)



def future_past_solstice(delta, t = None):
    '''
    Predict the time point of the next or previous solstice
    
    @param   delta:float  Iteration step size, negative for
                          past event, positive for future event
    @param   t:float?     The time in Julian Centuries, `None`
                          for the current time
    @return  :float       The calculated time point
    '''
    e = 0.00001
    fun = solar_declination
    dfun = lambda t : (fun(t + e) - fun(t - e)) / (2 * e)
    return solar_prediction(delta, 0, dfun, t = t)


def future_solstice(t = None):
    '''
    Predict the time point of the next solstice
    
    @param   t:float?  The time in Julian Centuries,
                       `None` for the current time
    @return  :float    The calculated time point
    '''
    return future_past_solstice(0.01 / 2000, t)
    

def past_solstice(t = None):
    '''
    Predict the time point of the previous solstice
    
    @param   t:float?  The time in Julian Centuries,
                       `None` for the current time
    @return  :float    The calculated time point
    '''
    return future_past_solstice(0.01 / -2000, t)



def future_past_elevation(delta, latitude, longitude, elevation, t = None):
    '''
    Predict the time point of the next or previous time
    the Sun reaches or reached a specific elevation
    
    @param   delta:float      Iteration step size, negative for past
                              event, positive for future event
    @param   latitude:float   The latitude in degrees northwards from
                              the equator, negative for southwards
    @param   longitude:float  The longitude in degrees eastwards from
                              Greenwich, negative for westwards
    @param   elevation:float  The elevation of interest
    @param   t:float?         The time in Julian Centuries, `None`
                              for the current time
    @return  :float?          The calculated time point, `None` if
                              none were found within a year
    '''
    fun = lambda t : solar_elevation(latitude, longitude, t)
    return solar_prediction(delta, elevation, fun, t = t)


def future_elevation(latitude, longitude, elevation, t = None):
    '''
    Predict the time point of the next time the Sun
    reaches a specific elevation
    
    @param   latitude:float   The latitude in degrees northwards from
                              the equator, negative for southwards
    @param   longitude:float  The longitude in degrees eastwards from
                              Greenwich, negative for westwards
    @param   elevation:float  The elevation of interest
    @param   t:float?         The time in Julian Centuries, `None`
                              for the current time
    @return  :float?          The calculated time point, `None` if
                              none were found within a year
    '''
    return future_past_elevation(0.01 / 2000, latitude, longitude, elevation, t)
    

def past_elevation(latitude, longitude, elevation, t = None):
    '''
    Predict the time point of the previous time the Sun
    reached a specific elevation
    
    @param   latitude:float   The latitude in degrees northwards from
                              the equator, negative for southwards
    @param   longitude:float  The longitude in degrees eastwards from
                              Greenwich, negative for westwards
    @param   elevation:float  The elevation of interest
    @param   t:float?         The time in Julian Centuries, `None`
                              for the current time
    @return  :float?          The calculated time point, `None` if
                              none were found within a year
    '''
    return future_past_elevation(0.01 / -2000, latitude, longitude, elevation, t)



def future_past_elevation_derivative(delta, latitude, longitude, derivative, t = None):
    '''
    Predict the time point of the next or previous time the
    Sun reaches or reached a specific elevation derivative
    
    @param   delta:float       Iteration step size, negative for past
                               event, positive for future event
    @param   latitude:float    The latitude in degrees northwards from
                               the equator, negative for southwards
    @param   longitude:float   The longitude in degrees eastwards from
                               Greenwich, negative for westwards
    @param   derivative:float  The elevation derivative value of interest
    @param   t:float?          The time in Julian Centuries, `None`
                               for the current time
    @return  :float?           The calculated time point, `None` if
                               none were found within a year
    '''
    e = 0.00001
    fun = lambda t : solar_elevation(latitude, longitude, t)
    dfun = lambda t : (fun(t + e) - fun(t - e)) / (2 * e)
    return solar_prediction(delta, derivative, dfun, t = t)


def future_elevation_derivative(latitude, longitude, derivative, t = None):
    '''
    Predict the time point of the next time the
    Sun reaches a specific elevation derivative
    
    @param   latitude:float    The latitude in degrees northwards from
                               the equator, negative for southwards
    @param   longitude:float   The longitude in degrees eastwards from
                               Greenwich, negative for westwards
    @param   derivative:float  The elevation derivative value of interest
    @param   t:float?          The time in Julian Centuries, `None`
                               for the current time
    @return  :float?           The calculated time point, `None` if
                               none were found within a year
    '''
    return future_past_elevation_derivative(0.01 / 2000, latitude, longitude, derivative, t)
    

def past_elevation_derivative(latitude, longitude, derivative, t = None):
    '''
    Predict the time point of the previous time
    the Sun reached a specific elevation derivative
    
    @param   latitude:float    The latitude in degrees northwards from
                               the equator, negative for southwards
    @param   longitude:float   The longitude in degrees eastwards from
                               Greenwich, negative for westwards
    @param   derivative:float  The elevation derivative value of interest
    @param   t:float?          The time in Julian Centuries, `None`
                               for the current time
    @return  :float?           The calculated time point, `None`
                               if none were found within a year
    '''
    return future_past_elevation_derivative(0.01 / -2000, latitude, longitude, derivative, t)



# TODO: This algorithm is imprecise, gives an incorrent sunrise and I do not fully know its behaviour
def sunrise_equation(latitude, longitude, t = None):
    import math
    # Calculate Julian Cycle
    j_cent = julian_centuries() if t is None else t
    j_date = julian_centuries_to_julian_day(j_cent)
    j_cycle = int(j_date - 2451545.0009 - longitude / 360 + 0.5)
    
    # Calculate approximate solar noon and solar man anomaly
    approx_solar_noon = 451545.0009 + longitude / 360 + j_cycle
    solar_mean_anomaly = int(357.5291 + 0.98560028 * (j_cycle - 2451545)) % 360
    
    # Calculate solar equation of centre
    equation_of_centre  = 1.9148 * math.sin(1 * solar_mean_anomaly)
    equation_of_centre += 0.0200 * math.sin(2 * solar_mean_anomaly)
    equation_of_centre += 0.0003 * math.sin(3 * solar_mean_anomaly)
    
    # Calculate solar ecliptic longitude
    ecliptic_longitude = (solar_mean_anomaly + 102.9372 + equation_of_centre + 180) % 360
    
    # Calculate solar transit
    solar_transit  = approx_solar_noon + 0.0053 * math.sin(solar_mean_anomaly)
    solar_transit -= 0.0069 * math.sin(2 * ecliptic_longitude)
    
    # Calculate solar declination
    declination = math.asin(math.sin(ecliptic_longitude) * math.sin(radians(23.45)))
    
    # Calculate solar hour angle
    hour_angle  = math.sin(radians(-0.83))
    hour_angle -= math.sin(latitude) * math.sin(declination)
    hour_angle /= math.cos(latitude) * math.cos(declination)
    hour_angle = degrees(math.acos(hour_angle))
    
    # Calculate time of sunset and sunrise
    sunset  = 2451545.0009 + (hour_angle + longitude) / 360
    sunset += j_cycle + solar_transit - approx_solar_noon
    sunrise = 2 * solar_transit - sunset
    
    # Convert to Julian Centuries
    return (julian_day_to_julian_centuries(sunset),
            julian_day_to_julian_centuries(sunrise))