aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/solar_python.py796
1 files changed, 796 insertions, 0 deletions
diff --git a/src/solar_python.py b/src/solar_python.py
new file mode 100644
index 0000000..bce8beb
--- /dev/null
+++ b/src/solar_python.py
@@ -0,0 +1,796 @@
+# solar-python — Solar data calculation and prediction library for Python
+# Copyright © 2014 Mattias Andrée (maandree@member.fsf.org)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Affero General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU Affero General Public License for more details.
+#
+# You should have received a copy of the GNU Affero General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+from math import *
+import time
+
+
+SOLAR_ELEVATION_SUNSET_SUNRISE = 0.0
+'''
+:float The Sun's elevation at sunset and sunrise,
+ measured in degrees
+'''
+
+SOLAR_ELEVATION_CIVIL_DUSK_DAWN = -6.0
+'''
+:float The Sun's elevation at civil dusk and civil
+ dawn, measured in degrees
+'''
+
+SOLAR_ELEVATION_NAUTICAL_DUSK_DAWN = -12.0
+'''
+:float The Sun's elevation at nautical dusk and
+ nautical dawn, measured in degrees
+'''
+
+SOLAR_ELEVATION_ASTRONOMICAL_DUSK_DAWN = -18.0
+'''
+:float The Sun's elevation at astronomical dusk
+ and astronomical dawn, measured in degrees
+'''
+
+SOLAR_ELEVATION_RANGE_TWILIGHT = (-18.0, 0.0)
+'''
+:(float, float) The Sun's lowest and highest elevation during
+ all periods of twilight, measured in degrees
+'''
+
+SOLAR_ELEVATION_RANGE_CIVIL_TWILIGHT = (-6.0, 0.0)
+'''
+:(float, float) The Sun's lowest and highest elevation
+ during civil twilight, measured in degrees
+'''
+
+SOLAR_ELEVATION_RANGE_NAUTICAL_TWILIGHT = (-12.0, -6.0)
+'''
+:(float, float) The Sun's lowest and highest elevation
+ during nautical twilight, measured in degrees
+'''
+
+SOLAR_ELEVATION_RANGE_ASTRONOMICAL_TWILIGHT = (-18.0, -12.0)
+'''
+:(float, float) The Sun's lowest and highest elevation during
+ astronomical twilight, measured in degrees
+'''
+
+
+
+# The following functions are used to calculate the result for `sun`
+# (most of them) but could be used for anything else. There name is
+# should tell you enough, `t` (and `noon`) is in Julian centuries
+# except for in the convertion methods.
+
+
+def julian_day_to_epoch(t):
+ '''
+ Converts a Julian Day timestamp to a POSIX time timestamp
+
+ @param t:float The time in Julian Days
+ @return :float The time in POSIX time
+ '''
+ return (t - 2440587.5) * 86400.0
+
+
+def epoch_to_julian_day(t):
+ '''
+ Converts a POSIX time timestamp to a Julian Day timestamp
+
+ @param t:float The time in POSIX time
+ @return :float The time in Julian Days
+ '''
+ return t / 86400.0 + 2440587.5
+
+
+def julian_day_to_julian_centuries(t):
+ '''
+ Converts a Julian Day timestamp to a Julian Centuries timestamp
+
+ @param t:float The time in Julian Days
+ @return :float The time in Julian Centuries
+ '''
+ return (t - 2451545.0) / 36525.0
+
+
+def julian_centuries_to_julian_day(t):
+ '''
+ Converts a Julian Centuries timestamp to a Julian Day timestamp
+
+ @param t:float The time in Julian Centuries
+ @return :float The time in Julian Days
+ '''
+ return t * 36525.0 + 2451545.0
+
+
+def epoch_to_julian_centuries(t):
+ '''
+ Converts a POSIX time timestamp to a Julian Centuries timestamp
+
+ @param t:float The time in POSIX time
+ @return :float The time in Julian Centuries
+ '''
+ return julian_day_to_julian_centuries(epoch_to_julian_day(t))
+
+
+def julian_centuries_to_epoch(t):
+ '''
+ Converts a Julian Centuries timestamp to a POSIX time timestamp
+
+ @param t:float The time in Julian Centuries
+ @return :float The time in POSIX time
+ '''
+ return julian_day_to_epoch(julian_centuries_to_julian_day(t))
+
+
+def epoch():
+ '''
+ Get current POSIX time
+
+ @return :float The current POSIX time
+ '''
+ return time.time()
+
+
+def julian_day():
+ '''
+ Get current Julian Day time
+
+ @return :float The current Julian Day time
+ '''
+ return epoch_to_julian_day(epoch())
+
+
+def julian_centuries():
+ '''
+ Get current Julian Centuries time (100 Julian days since J2000)
+
+ @return :float The current Julian Centuries time
+ '''
+ return epoch_to_julian_centuries(epoch())
+
+
+def radians(deg):
+ '''
+ Convert an angle from degrees to radians
+
+ @param deg:float The angle in degrees
+ @return :float The angle in radians
+ '''
+ return deg * pi / 180
+
+
+def degrees(rad):
+ '''
+ Convert an angle from radians to degrees
+
+ @param rad:float The angle in radians
+ @return :float The angle in degrees
+ '''
+ return rad * 180 / pi
+
+
+def sun_geometric_mean_longitude(t):
+ '''
+ Calculates the Sun's geometric mean longitude
+
+ @param t:float The time in Julian Centuries
+ @return :float The Sun's geometric mean longitude in radians
+ '''
+ return radians((0.0003032 * t ** 2 + 36000.76983 * t + 280.46646) % 360)
+ # CANNIBALISERS:
+ # The result of this function should always be positive, this
+ # means that after division modulo 360 but before `radians`,
+ # you will need to add 360 if the value is negative. This can
+ # only happen if `t` is negative, which can only happen for date
+ # times before 2000-(01)Jan-01 12:00:00 UTC par division modulo
+ # implementations with the signess of atleast the left operand.
+ # More precively, it happens between cirka 1970-(01)Jan-11
+ # 16:09:02 UTC and cirka -374702470660351740 seconds before
+ # January 1, 1970 00:00 UTC, which is so far back in time
+ # it cannot be reliable pinned down to the right year, but it
+ # is without a shadow of a doubt looooong before the Earth
+ # was formed, is right up there with the age of the Milky Way
+ # and the universe itself.
+
+
+def sun_geometric_mean_anomaly(t):
+ '''
+ Calculates the Sun's geometric mean anomaly
+
+ @param t:float The time in Julian Centuries
+ @return :float The Sun's geometric mean anomaly in radians
+ '''
+ return radians(-0.0001537 * t ** 2 + 35999.05029 * t + 357.52911)
+
+
+def earth_orbit_eccentricity(t):
+ '''
+ Calculates the Earth's orbit eccentricity
+
+ @param t:float The time in Julian Centuries
+ @return :float The Earth's orbit eccentricity
+ '''
+ return -0.0000001267 * t ** 2 - 0.000042037 * t + 0.016708634
+
+
+def sun_equation_of_centre(t):
+ '''
+ Calculates the Sun's equation of the centre, the difference between
+ the true anomaly and the mean anomaly
+
+ @param t:float The time in Julian Centuries
+ @return :float The Sun's equation of the centre, in radians
+ '''
+ a = sun_geometric_mean_anomaly(t)
+ rc = sin(1 * a) * (-0.000014 * t ** 2 - 0.004817 * t + 1.914602)
+ rc += sin(2 * a) * (-0.000101 * t + 0.019993)
+ rc += sin(3 * a) * 0.000289
+ return radians(rc)
+
+
+def sun_real_longitude(t):
+ '''
+ Calculates the Sun's real longitudinal position
+
+ @param t:float The time in Julian Centuries
+ @return :float The longitude, in radians
+ '''
+ rc = sun_geometric_mean_longitude(t)
+ return rc + sun_equation_of_centre(t)
+
+
+def sun_apparent_longitude(t):
+ '''
+ Calculates the Sun's apparent longitudinal position
+
+ @param t:float The time in Julian Centuries
+ @return :float The longitude, in radians
+ '''
+ rc = degrees(sun_real_longitude(t)) - 0.00569
+ rc -= 0.00478 * sin(radians(-1934.136 * t + 125.04))
+ return radians(rc)
+
+
+def mean_ecliptic_obliquity(t):
+ '''
+ Calculates the mean ecliptic obliquity of the Sun's
+ apparent motion without variation correction
+
+ @param t:float The time in Julian Centuries
+ @return :float The uncorrected mean obliquity, in radians
+ '''
+ rc = 0.001813 * t ** 3 - 0.00059 * t ** 2 - 46.815 * t + 21.448
+ rc = 26 + rc / 60
+ rc = 23 + rc / 60
+ return radians(rc)
+
+
+def corrected_mean_ecliptic_obliquity(t):
+ '''
+ Calculates the mean ecliptic obliquity of the Sun's
+ apparent motion with variation correction
+
+ @param t:float The time in Julian Centuries
+ @return :float The mean obliquity, in radians
+ '''
+ rc = -1934.136 * t + 125.04
+ rc = 0.00256 * cos(radians(rc))
+ rc += degrees(mean_ecliptic_obliquity(t))
+ return radians(rc)
+
+
+def solar_declination(t):
+ '''
+ Calculates the Sun's declination
+
+ @param t:float The time in Julian Centuries
+ @return :float The Sun's declination, in radians
+ '''
+ rc = sin(corrected_mean_ecliptic_obliquity(t))
+ rc *= sin(sun_apparent_longitude(t))
+ return asin(rc)
+
+
+def equation_of_time(t):
+ '''
+ Calculates the equation of time, the discrepancy
+ between apparent and mean solar time
+
+ @param t:float The time in Julian Centuries
+ @return :float The equation of time, in degrees
+ '''
+ l = sun_geometric_mean_longitude(t)
+ e = earth_orbit_eccentricity(t)
+ m = sun_geometric_mean_anomaly(t)
+ y = corrected_mean_ecliptic_obliquity(t)
+ y = tan(y / 2) ** 2
+ rc = y * sin(2 * l)
+ rc += (4 * y * cos(2 * l) - 2) * e * sin(m)
+ rc -= 0.5 * y ** 2 * sin(4 * l)
+ rc -= 1.25 * e ** 2 * sin(2 * m)
+ return 4 * degrees(rc)
+
+
+def hour_angle_from_elevation(latitude, declination, elevation):
+ '''
+ Calculates the solar hour angle from the Sun's elevation
+
+ @param longitude:float The longitude in degrees eastwards
+ from Greenwich, negative for westwards
+ @param declination:float The declination, in degrees
+ @param hour_angle:float The Sun's elevation, in degrees
+ @return :float The solar hour angle, in degrees
+ '''
+ if elevation == 0:
+ return 0
+ rc = cos(abs(elevation))
+ rc -= sin(radians(latitude)) * sin(declination)
+ rc /= cos(radians(latitude)) * cos(declination)
+ rc = acos(rc)
+ return -rc if (rc < 0) == (elevation < 0) else rc;
+
+
+def elevation_from_hour_angle(latitude, declination, hour_angle):
+ '''
+ Calculates the Sun's elevation from the solar hour angle
+
+ @param longitude:float The longitude in degrees eastwards
+ from Greenwich, negative for westwards
+ @param declination:float The declination, in degrees
+ @param hour_angle:float The solar hour angle, in degrees
+ @return :float The Sun's elevation, in degrees
+ '''
+ rc = cos(radians(latitude))
+ rc *= cos(hour_angle) * cos(declination)
+ rc += sin(radians(latitude)) * sin(declination)
+ return asin(rc)
+
+
+def time_of_solar_noon(t, longitude):
+ '''
+ Calculates the time of the closest solar noon
+
+ @param t:float A time close to the seeked time,
+ in Julian Centuries
+ @param longitude:float The longitude in degrees eastwards from
+ Greenwich, negative for westwards
+ @return :float The time, in Julian Centuries,
+ of the closest solar noon
+ '''
+ t, rc = julian_centuries_to_julian_day(t), longitude
+ for (k, m) in ((-360, 0), (1440, -0.5)):
+ rc = julian_day_to_julian_centuries(t + m + rc / k)
+ rc = 720 - 4 * longitude - equation_of_time(rc)
+ return rc
+
+
+def time_of_solar_elevation(t, noon, latitude, longitude, elevation):
+ '''
+ Calculates the time the Sun has a specified apparent
+ elevation at a geographical position
+
+ @param t:float A time close to the seeked time,
+ in Julian Centuries
+ @param noon:float The time of the closest solar noon
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param longitude:float The longitude in degrees eastwards from
+ Greenwich, negative for westwards
+ @param elevation:float The solar elevation, in degrees
+ @return :float The time, in Julian Centuries,
+ of the specified elevation
+ '''
+ rc = noon
+ rc, et = solar_declination(rc), equation_of_time(rc)
+ rc = hour_angle_from_elevation(latitude, rc, elevation)
+ rc = 720 - 4 * (longitude + degrees(rc)) - et
+
+ rc = julian_day_to_julian_centuries(julian_centuries_to_julian_day(t) + rc / 1440)
+ rc, et = solar_declination(rc), equation_of_time(rc)
+ rc = hour_angle_from_elevation(latitude, rc, elevation)
+ rc = 720 - 4 * (longitude + degrees(rc)) - et
+ return rc
+
+
+def solar_elevation_from_time(t, latitude, longitude):
+ '''
+ Calculates the Sun's elevation as apparent
+ from a geographical position
+
+ @param t:float The time in Julian Centuries
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param longitude:float The longitude in degrees eastwards from
+ Greenwich, negative for westwards
+ @return :float The Sun's apparent at the specified time
+ as seen from the specified position,
+ measured in degrees
+ '''
+ rc = julian_centuries_to_julian_day(t)
+ rc = (rc - float(int(rc + 0.5)) - 0.5) * 1440
+ rc = 720 - rc - equation_of_time(t)
+ rc = radians(rc / 4 - longitude)
+ return elevation_from_hour_angle(latitude, solar_declination(t), rc)
+
+
+def solar_elevation(latitude, longitude, t = None):
+ '''
+ Calculates the Sun's elevation as apparent
+ from a geographical position
+
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param longitude:float The longitude in degrees eastwards from
+ Greenwich, negative for westwards
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return :float The Sun's apparent at the specified time
+ as seen from the specified position,
+ measured in degrees
+ '''
+ rc = julian_centuries() if t is None else t
+ rc = solar_elevation_from_time(rc, latitude, longitude)
+ return degrees(rc)
+
+
+
+def have_sunrise_and_sunset(latitude, t = None):
+ '''
+ Determine whether solar declination currently is
+ so that there can be sunrises and sunsets. If not,
+ you either have 24-hour daytime or 24-hour nighttime.
+
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return Whether there can be sunrises and
+ sunsets where you are located
+ '''
+ t = julian_centuries() if t is None else t
+ d = degrees(solar_declination(t))
+ ## Convert everything to the Northern hemisphere
+ latitude = abs(latitude)
+ if d >= 0:
+ ## Northern summer
+ return -90 + d < latitude < 90 - d
+ else:
+ ## Northern winter
+ return -90 - d < latitude < 90 + d
+
+
+def is_summer(latitude, t = None):
+ '''
+ Determine whether it is summer
+
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return Whether it is summer on the hemisphere
+ you are located on
+ '''
+ t = julian_centuries() if t is None else t
+ d = solar_declination(t)
+ return (d > 0) == (latitude > 0)
+
+
+def is_winter(latitude, t = None):
+ '''
+ Determine whether it is winter
+
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return Whether it is winter on the hemisphere
+ you are located on
+ '''
+ t = julian_centuries() if t is None else t
+ d = solar_declination(t)
+ return not ((d > 0) == (latitude > 0))
+
+
+
+def solar_prediction(delta, requested, fun, epsilon = 0.000001, span = 0.01, t = None):
+ '''
+ Predict the time point of the next or previous
+ time an arbitrary condition is meet
+
+ @param delta:float Iteration step size, negative for past
+ event, positive for future event
+ @param requested:float The value returned by `fun` for which to
+ calculate the time point of occurrence
+ @param fun:(t:float)→float Function that calculate the data of interest
+ @param epsilon:float Error tolerance for `requested`
+ @param span:float The number of Julian centuries (0,01 for
+ one year) to restrict the search to
+ @param t:float? The time in Julian Centuries, `None` for
+ the current time
+ @return :float? The calculated time point, `None` if none
+ were found within the specified time span
+ '''
+ t = julian_centuries() if t is None else t
+ t1 = t2 = t
+ v1 = v0 = fun(t)
+ while True:
+ if abs(t2 - t) > span:
+ return None
+ t2 += delta
+ v2 = fun(t2)
+ if (v1 <= requested <= v2) or ((requested >= v1 >= v2) and (requested <= v0)):
+ break
+ if (v1 >= requested >= v2) or ((requested <= v1 <= v2) and (requested >= v0)):
+ break
+ t1 = t2
+ v2 = v1
+ for _itr in range(1000):
+ tm = (t1 + t2) / 2
+ v1 = fun(t1)
+ v2 = fun(t2)
+ vm = fun(tm)
+ if abs(v1 - v2) < epsilon:
+ return tm if abs(vm) < epsilon else None
+ if v1 < v2:
+ if requested < vm:
+ t2 = tm
+ else:
+ t1 = tm
+ elif v1 > v2:
+ if requested > vm:
+ t2 = tm
+ else:
+ t1 = tm
+ return None
+
+
+
+def future_past_equinox(delta, t = None):
+ '''
+ Predict the time point of the next or previous equinox
+
+ @param delta:float Iteration step size, negative for
+ past event, positive for future event
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return :float The calculated time point
+ '''
+ return solar_prediction(delta, 0, solar_declination, t = t)
+
+
+def future_equinox(t = None):
+ '''
+ Predict the time point of the next equinox
+
+ @param delta:float Iteration step size, negative for
+ past event, positive for future event
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return :float The calculated time point
+ '''
+ return future_past_equinox(0.01 / 2000, t)
+
+
+def past_equinox(t = None):
+ '''
+ Predict the time point of the previous equinox
+
+ @param delta:float Iteration step size, negative for
+ past event, positive for future event
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return :float The calculated time point
+ '''
+ return future_past_equinox(0.01 / -2000, t)
+
+
+
+def future_past_solstice(delta, t = None):
+ '''
+ Predict the time point of the next or previous solstice
+
+ @param delta:float Iteration step size, negative for
+ past event, positive for future event
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return :float The calculated time point
+ '''
+ e = 0.00001
+ fun = solar_declination
+ dfun = lambda t : (fun(t + e) - fun(t - e)) / 2
+ return solar_prediction(delta, 0, dfun, t = t)
+
+
+def future_solstice(t = None):
+ '''
+ Predict the time point of the next solstice
+
+ @param t:float? The time in Julian Centuries,
+ `None` for the current time
+ @return :float The calculated time point
+ '''
+ return future_past_solstice(0.01 / 2000, t)
+
+
+def past_solstice(t = None):
+ '''
+ Predict the time point of the previous solstice
+
+ @param t:float? The time in Julian Centuries,
+ `None` for the current time
+ @return :float The calculated time point
+ '''
+ return future_past_solstice(0.01 / -2000, t)
+
+
+
+def future_past_elevation(delta, latitude, longitude, elevation, t = None):
+ '''
+ Predict the time point of the next or previous time
+ the Sun reaches or reached a specific elevation
+
+ @param delta:float Iteration step size, negative for past
+ event, positive for future event
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param longitude:float The longitude in degrees eastwards from
+ Greenwich, negative for westwards
+ @param elevation:float The elevation of interest
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return :float? The calculated time point, `None` if
+ none were found within a year
+ '''
+ fun = lambda t : solar_elevation(latitude, longitude, t)
+ return solar_prediction(delta, elevation, fun, t = t)
+
+
+def future_elevation(latitude, longitude, elevation, t = None):
+ '''
+ Predict the time point of the next time the Sun
+ reaches a specific elevation
+
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param longitude:float The longitude in degrees eastwards from
+ Greenwich, negative for westwards
+ @param elevation:float The elevation of interest
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return :float? The calculated time point, `None` if
+ none were found within a year
+ '''
+ return future_past_elevation(0.01 / 2000, latitude, longitude, elevation, t)
+
+
+def past_elevation(latitude, longitude, elevation, t = None):
+ '''
+ Predict the time point of the previous time the Sun
+ reached a specific elevation
+
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param longitude:float The longitude in degrees eastwards from
+ Greenwich, negative for westwards
+ @param elevation:float The elevation of interest
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return :float? The calculated time point, `None` if
+ none were found within a year
+ '''
+ return future_past_elevation(0.01 / -2000, latitude, longitude, elevation, t)
+
+
+
+def future_past_elevation_derivative(delta, latitude, longitude, derivative, t = None):
+ '''
+ Predict the time point of the next or previous time the
+ Sun reaches or reached a specific elevation derivative
+
+ @param delta:float Iteration step size, negative for past
+ event, positive for future event
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param longitude:float The longitude in degrees eastwards from
+ Greenwich, negative for westwards
+ @param derivative:float The elevation derivative value of interest
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return :float? The calculated time point, `None` if
+ none were found within a year
+ '''
+ fun = lambda t : solar_elevation(latitude, longitude, t)
+ dfun = lambda t : (fun(t + e) - fun(t - e)) / 2
+ return solar_prediction(delta, derivative, dfun, t = t)
+
+
+def future_elevation_derivative(latitude, longitude, derivative, t = None):
+ '''
+ Predict the time point of the next time the
+ Sun reaches a specific elevation derivative
+
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param longitude:float The longitude in degrees eastwards from
+ Greenwich, negative for westwards
+ @param derivative:float The elevation derivative value of interest
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return :float? The calculated time point, `None` if
+ none were found within a year
+ '''
+ return future_past_elevation_derivative(0.01 / 2000, latitude, longitude, derivative, t)
+
+
+def past_elevation_derivative(latitude, longitude, derivative, t = None):
+ '''
+ Predict the time point of the previous time
+ the Sun reached a specific elevation derivative
+
+ @param latitude:float The latitude in degrees northwards from
+ the equator, negative for southwards
+ @param longitude:float The longitude in degrees eastwards from
+ Greenwich, negative for westwards
+ @param derivative:float The elevation derivative value of interest
+ @param t:float? The time in Julian Centuries, `None`
+ for the current time
+ @return :float? The calculated time point, `None`
+ if none were found within a year
+ '''
+ return future_past_elevation_derivative(0.01 / -2000, latitude, longitude, derivative, t)
+
+
+
+# TODO: This algorithm is imprecise, gives an incorrent sunrise and I do not fully know its behaviour
+def sunrise_equation(latitude, longitude, t = None):
+ # Calculate Julian Cycle
+ j_cent = julian_centuries() if t is None else t
+ j_date = julian_centuries_to_julian_day(j_cent)
+ j_cycle = int(j_date - 2451545.0009 - longitude / 360 + 0.5)
+
+ # Calculate approximate solar noon and solar man anomaly
+ approx_solar_noon = 451545.0009 + longitude / 360 + j_cycle
+ solar_mean_anomaly = int(357.5291 + 0.98560028 * (j_cycle - 2451545)) % 360
+
+ # Calculate solar equation of centre
+ equation_of_centre = 1.9148 * sin(1 * solar_mean_anomaly)
+ equation_of_centre += 0.0200 * sin(2 * solar_mean_anomaly)
+ equation_of_centre += 0.0003 * sin(3 * solar_mean_anomaly)
+
+ # Calculate solar ecliptic longitude
+ ecliptic_longitude = (solar_mean_anomaly + 102.9372 + equation_of_centre + 180) % 360
+
+ # Calculate solar transit
+ solar_transit = approx_solar_noon + 0.0053 * sin(solar_mean_anomaly)
+ solar_transit -= 0.0069 * sin(2 * ecliptic_longitude)
+
+ # Calculate solar declination
+ declination = asin(sin(ecliptic_longitude) * sin(radians(23.45)))
+
+ # Calculate solar hour angle
+ hour_angle = sin(radians(-0.83))
+ hour_angle -= sin(latitude) * sin(declination)
+ hour_angle /= cos(latitude) * cos(declination)
+ hour_angle = degrees(acos(hour_angle))
+
+ # Calculate time of sunset and sunrise
+ sunset = 2451545.0009 + (hour_angle + longitude) / 360
+ sunset += j_cycle + solar_transit - approx_solar_noon
+ sunrise = 2 * solar_transit - sunset
+
+ # Convert to Julian Centuries
+ return (julian_day_to_julian_centuries(sunset),
+ julian_day_to_julian_centuries(sunrise))
+