/**
* slibc — Yet another C library
* Copyright © 2015 Mattias Andrée (maandree@member.fsf.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
/* TODO #include */
#define __ALIGN(p) (*(size_t*)(((char*)(p)) - sizeof(size_t)))
#define PURE_ALLOC(p) (((char*)(p)) - (__ALIGN(p) + 2 * sizeof(size_t)))
#define PURE_SIZE(p) (*(size_t*)PURE_ALLOC(p) + 2 * sizeof(size_t))
/**
* This function is identical to `free`, except it is guaranteed not to
* override the memory segment with zeroes before freeing the allocation.
*
* @param segment The memory segment to free.
*/
void fast_free(void* segment)
{
if (segment == NULL)
return;
munmap(PURE_ALLOC(segment), PURE_SIZE(segment));
}
/**
* This function is identical to `free`, except it is guaranteed to
* override the memory segment with zeroes before freeing the allocation.
*
* @param segment The memory segment to free.
*/
void secure_free(void* segment)
{
if (segment == NULL)
return;
explicit_bzero(PURE_ALLOC(segment), PURE_SIZE(segment));
fast_free(segment);
}
/**
* This function returns the allocation size of
* a memory segment.
*
* Note, this only works for the malloc-family of functions.
* It does not work on `alloca`, `strdupa` (or similar
* functions), memory maps (that are not created by `malloc`,)
* or arrays.
*
* `p = malloc(n), allocsize(p)` will return `n`.
*
* @param segment The memory segment.
* @return The size of the memory segment, 0 on error.
*
* @throws EINVAL If `segment` is `NULL`.
* @throws EFAULT If `segment` is not a pointer to an allocation
* on the heap, or was not allocated with a function
* implemented in slibc. It is however not guaranteed
* that this will happen, undefined behaviour may be
* invoked instead.
*/
size_t allocsize(void* segment)
{
if (segment == NULL)
{
errno = EINVAL;
return 0;
}
return *(size_t*)PURE_ALLOC(segment);
}
/**
* Common code for realloc-functions, apart from `naive_realloc`.
*
* @param ptr:void* The old allocation, see `realloc` for more details.
* @param size:size_t The new allocation size, see `realloc` for more details.
* @param CLEAR_OLD:int Whether the disowned area is cleared, even if `ptr` is returned.
* @param CLEAR_NEW:int Whether the newly claimed area is cleared.
* @param CLEAR_FREE:int Whether the old allocation is cleared if a new pointer is returned.
* @return The new allocation, see `realloc` for more details.
*/
#define REALLOC(ptr, size, CLEAR_OLD, CLEAR_NEW, CLEAR_FREE) \
size_t old_size; \
void* new_ptr; \
\
if (size == 0) \
return secure_free(ptr), NULL; \
\
if (ptr == NULL) \
return CLEAR_NEW ? malloc(size) : calloc(1, size); \
\
old_size = allocsize(ptr); \
if (old_size == size) \
return ptr; \
\
if (CLEAR_OLD ? (old_size > size) : 0) \
explicit_bzero(((char*)ptr) + size, old_size - size); \
\
new_ptr = naive_realloc(ptr, sizeof(max_align_t), size); \
if (new_ptr != ptr) \
{ \
if (new_ptr == NULL) \
return NULL; \
if (CLEAR_FREE) \
explicit_bzero(PURE_ALLOC(ptr), PURE_SIZE(ptr)); \
fast_free(ptr); \
} \
\
if (CLEAR_NEW ? (old_size < size) : 0) \
explicit_bzero(((char*)new_ptr) + old_size, size - old_size); \
\
return new_ptr
/**
* Variant of `realloc` that overrides newly allocated space
* with zeroes. Additionally, it will override any freed space
* with zeroes, including the old allocation if it creates a
* new allocation.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @return The new allocation, see `realloc` for more details.
*
* @throws ENOMEM The process cannot allocate more memory.
*/
void* crealloc(void* ptr, size_t size)
{
REALLOC(ptr, size, 1, 1, 1);
}
/**
* This function behaves exactly like `realloc`, except it is
* guaranteed to never initialise or errors data.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @return The new allocation, see `realloc` for more details.
*
* @throws ENOMEM The process cannot allocate more memory.
*/
void* fast_realloc(void* ptr, size_t size)
{
REALLOC(ptr, size, 0, 0, 0);
}
/**
* This function behaves exactly like `crealloc`, except it
* does not initialise newly allocated size.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @return The new allocation, see `realloc` for more details.
*
* @throws ENOMEM The process cannot allocate more memory.
*/
void* secure_realloc(void* ptr, size_t size)
{
REALLOC(ptr, size, 1, 0, 1);
}
/**
* This function behaves exactly like `realloc`,
* except you can freely select what memory it clears.
*
* `crealloc(p, n)` is equivalent to (but slightly fast than)
* `custom_realloc(p, n, 1, 1, 1)`.
*
* `fast_realloc(p, n)` is equivalent to (but slightly fast than)
* `custom_realloc(p, n, 0, 0, 0)`.
*
* `secure_realloc(p, n)` is equivalent to (but slightly fast than)
* `custom_realloc(p, n, 1, 0, 1)`.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @param clear_old Whether the disowned area is cleared, even if `ptr` is returned.
* @param clear_new Whether the newly claimed area is cleared.
* @param clear_free Whether the old allocation is cleared if a new pointer is returned.
* @return The new allocation, see `realloc` for more details.
*
* @throws ENOMEM The process cannot allocate more memory.
*/
void* custom_realloc(void* ptr, size_t size, int clear_old, int clear_new, int clear_free)
{
REALLOC(ptr, size, clear_old, clear_new, clear_free);
}
/**
* This function is similar to `realloc`, however it
* does not copy the data in the memory segment when
* a new pointer is created. Additionally, the
* behaviour is undefined if `ptr` is `NULL`, `size`
* is zero, or `size` equals the old allocation size.
* These additional quirks were added to improve
* performance; after all, this function was added
* to improve performance.
*
* The behaviour is undefined if `mode` does not
* contain a valid flag-combination.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @param mode `EXTALLOC_CLEAR` or `EXTALLOC_MALLOC`, or both or neither.
* @return The new allocation, see `realloc` for more details.
* If `EXTALLOC_MALLOC` is not used, `NULL` is returned
* and `errno` set to zero, if a new allocation is required.
*
* @throws 0 `errno` is set to zero success if `NULL` is returned.
* @throws ENOMEM The process cannot allocate more memory.
*/
void* extalloc(void* ptr, size_t size, enum extalloc_mode mode)
{
int clear = mode & EXTALLOC_CLEAR;
size_t old_size = allocsize(ptr);
void* new_ptr;
if (clear ? (old_size > size) : 0)
explicit_bzero(((char*)ptr) + size, old_size - size);
new_ptr = (mode & EXTALLOC_MALLOC)
? naive_realloc(ptr, sizeof(max_align_t), size)
: naive_extalloc(ptr, size);
if ((new_ptr != ptr) && (new_ptr != NULL))
{
if (clear)
explicit_bzero(PURE_ALLOC(ptr), PURE_SIZE(ptr));
fast_free(ptr);
}
return new_ptr;
}
/**
* This function is similar to `realloc`, however its
* behaviour and pointer alignment can be tuned.
*
* This function cannot be used to force realignment,
* the aligment is applied when it is necessary to
* create a new allocation.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param boundary The alignment, not checked before necessary.
* @param size The new allocation size, see `realloc` for more details.
* @param mode `REMEMALIGN_CLEAR`, `REMEMALIGN_INIT`, or
* `REMEMALIGN_MEMCPY`, or both or neither.
* @return The new allocation, see `realloc` for more details.
*
* @throws 0 `errno` is set to zero success if `NULL` is returned.
* @throws EINVAL `mode` is invalid, or `boundary` is not a power of two.
* @throws ENOMEM The process cannot allocate more memory.
*/
void* rememalign(void* ptr, size_t boundary, size_t size, enum rememalign_mode mode)
{
int conf_clear = mode & REMEMALIGN_CLEAR;
int conf_init = mode & REMEMALIGN_INIT;
int conf_memcpy = mode & REMEMALIGN_MEMCPY;
size_t old_size;
void* new_ptr;
if ((enum rememalign_mode)(conf_clear | conf_init | conf_memcpy) != mode)
return errno = EINVAL, NULL;
if (size == 0)
return secure_free(ptr), NULL;
if (ptr == NULL)
{
new_ptr = memalign(boundary, size);
if ((new_ptr != NULL) && conf_init)
bzero(new_ptr, size);
return new_ptr;
}
old_size = allocsize(ptr);
if (old_size == size)
return ptr;
if (conf_clear ? (old_size > size) : 0)
explicit_bzero(((char*)ptr) + size, old_size - size);
if (conf_memcpy)
new_ptr = naive_realloc(ptr, boundary, size);
else
{
new_ptr = naive_extalloc(ptr, size);
if ((new_ptr == NULL) && (errno == 0))
new_ptr = memalign(boundary, size);
}
if (new_ptr != ptr)
{
if (new_ptr == NULL)
return NULL;
if (conf_clear)
explicit_bzero(PURE_ALLOC(ptr), PURE_SIZE(ptr));
fast_free(ptr);
}
if (conf_init ? (old_size < size) : 0)
explicit_bzero(((char*)new_ptr) + old_size, size - old_size);
return new_ptr;
}
/**
* This function behaves exactly like `fast_realloc`, except:
* - Its behaviour is undefined if `ptr` is `NULL`.
* - Its behaviour is undefined if `size` equals the old allocation size.
* - Its behaviour is undefined if `size` is zero.
* - It will never free `ptr`.
* - The alignment of new pointers can be specified.
*
* This function cannot be used to force realignment,
* the aligment is applied when it is necessary to
* create a new allocation.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param boundary The alignment, not checked before necessary.
* @param size The new allocation size, see `realloc` for more details.
* @return The new allocation, see `realloc` for more details.
*
* @throws EINVAL `boundary` is not a power of two.
* @throws ENOMEM The process cannot allocate more memory.
*/
void* naive_realloc(void* ptr, size_t boundary, size_t size)
{
/* TODO implementation of naive_realloc with reallocation */
return memalign(boundary, size);
(void) ptr;
}
/**
* This function behaves exactly like `naive_realloc`, except
* it will return `NULL` with `errno` set to zero, if it is
* not possible to perform the shrink or grow without creating
* new pointer.
*
* @param ptr The old allocation, see `realloc` for more details.
* @param size The new allocation size, see `realloc` for more details.
* @return `ptr` on success or `NULL` on error or if `malloc` is needed.
*
* @throws 0 `malloc` is require to perform the action.
* @throws ENOMEM The process cannot allocate more memory.
*/
void* naive_extalloc(void* ptr, size_t size)
{
/* TODO implement naive_extalloc */
return errno = 0, NULL;
(void) ptr, (void) size;
}
/**
* Allocates, deallocates, or reallocates memory without
* bookkeeping. The created allocation may not be inspected,
* deallocated, or reallocated with any other function than
* this function.
*
* If `new_size` is zero and `ptr` is `NULL`,
* nothing happens, but `errno` is set to zero and `NULL`
* is returned.
* If `new_size` is non-zero, `old_size` is zero, and `ptr`
* is not `NULL` or if `new_size` and `old_size` is non-zero,
* and `ptr` is `NULL`, `errno` is set to `EINVAL` and `NULL`
* is returned.
* If `new_size` and `old_size` is zero and `ptr` is not `NULL`,
* `errno` is set to `EINVAL` and `NULL` is returned.
* If `new_size` is zero, `old_size` is non-zero, and `ptr`
* is not `NULL`, `ptr` is deallocated, and `NULL` is returned
* with `errno` set to zero. The memory cleared before it is
* deallocated if `mode & FALLOC_CLEAR`.
* If `new_size` is non-zero, `old_size` is zero, and `ptr` is
* `NULL`, a new allocation is created of `new_size` bytes.
* It will be zero-initialised if `mode & FALLOC_INIT`.
* If `new_size` and `old_size` is non-zero and `ptr` is not
* `NULL`, `ptr` is reallocated. if the allocation is shrunk,
* the disowned area is cleared if `mode & FALLOC_CLEAR`.
* Newly available memory is zero-initialised if
* `mode & FALLOC_INIT`. If a new allocation is required,
* the data from the old allocation is only copied over to
* the new allocation if `mode & FALLOC_MEMCPY`. If
* `(mode & FALLOC_INIT) && !(mode & FALLOC_MEMCPY)`, the
* entire allocation will be cleared.
*
* @param ptr The old pointer, `NULL` if a new shall be created.
* @param ptrshift Pointer that is used to keep track of the pointer's
* shift for alignment. `NULL` if the shift shall not
* be tracked. If this is the case, `falloc` cannot
* be used to reallocate or deallocate an allocation,
* unless the pointer is unaligned (`alignment <= 1`).
* @param alignment The aligment of both the new and old pointer, zero
* or one if it should not be aligned.
* @param old_size The old allocation size, zero if a new shall be created.
* @param new_size The new allocation size, zero if it shall be freed.
* @param mode `FALLOC_CLEAR`, `FALLOC_INIT`, or `FALLOC_MEMCPY`, or
* both or neither.
* @return The new pointer, or the old pointer if it was reallocated
* without creating a new allocation. `NULL` is returned
* if `new_size` (errno is set to zero) is zero, or on error
* (errno is set to describe the error.)
*
* @throws 0 `new_size` is zero.
* @throws EINVAL The arguments are invalid.
* @throws ENOMEM The process cannot allocate more memory.
*/
void* falloc(void* ptr, size_t* ptrshift, size_t alignment,
size_t old_size, size_t new_size, enum falloc_mode mode)
{
void* new_ptr = NULL;
size_t shift = 0;
if (mode & (enum falloc_mode)~(FALLOC_CLEAR | FALLOC_INIT | FALLOC_MEMCPY))
return errno = EINVAL, NULL;
alignment = alignment ? alignment : 1;
if (new_size && old_size && ptr)
{
shift = ptrshift == NULL ? *ptrshift : 0;
if ((alignment > 1) && (ptrshift == NULL))
return errno = EINVAL, NULL;
if ((mode & FALLOC_CLEAR) && (old_size > new_size))
explicit_bzero(ptr + new_size, old_size - new_size);
new_ptr = falloc_extalloc(ptr - shift, old_size + shift, new_size + shift);
if ((new_ptr == NULL) && (errno == 0))
{
new_ptr = falloc_malloc(new_size + alignment - 1);
if (new_ptr != NULL)
{
if ((size_t)new_ptr % alignment)
shift = alignment - ((size_t)new_ptr % alignment);
if (ptrshift != NULL)
*ptrshift = shift;
new_ptr = (void*)((char*)new_ptr + shift);
if (mode & FALLOC_MEMCPY)
memcpy(new_ptr, ptr, old_size);
}
}
}
else if (new_size && (old_size || ptr))
return errno = EINVAL, NULL;
else if (new_size)
new_ptr = falloc_malloc(new_size);
else if (old_size && ptr)
{
shift = ptrshift == NULL ? *ptrshift : 0;
if ((alignment > 1) && (ptrshift == NULL))
return errno = EINVAL, NULL;
if (mode & FALLOC_CLEAR)
explicit_bzero(ptr, old_size);
falloc_free(ptr - shift);
return errno = 0, NULL;
}
else if (old_size || !ptr)
return errno = 0, NULL;
else
return errno = EINVAL, NULL;
if (new_ptr != NULL)
{
if ((new_ptr != ptr) && (ptr != NULL))
{
if (mode & FALLOC_CLEAR)
explicit_bzero(ptr, old_size);
falloc_free(ptr - shift);
}
if (mode & FALLOC_INIT)
{
if (!(mode & FALLOC_MEMCPY))
old_size = 0;
if (new_size > old_size)
bzero(new_ptr + old_size, new_size - old_size);
}
}
return errno = 0, new_ptr;
}