/** * sha3sum – SHA-3 (Keccak) checksum calculator * * Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** * Copy an array segment into an array * * @param src The source array * @param soff The source array offset * @param dest The destination array * @param doff The destination array offset * @param length The number of elements to copy */ static void arraycopy(int8[] src, int soff, int8[] dest, int doff, int length) { if (soff + length < doff) for (int i = 0; i < length; i++) dest[doff + i] = src[soff + i]; else for (int i = length - 1; i >= 0; i--) dest[doff + i] = src[soff + i]; } /** * Copy an array segment into an array * * @param src The source array * @param soff The source array offset * @param dest The destination array * @param doff The destination array offset * @param length The number of elements to copy */ static void arraycopy_string(string[] src, int soff, string[] dest, int doff, int length) { if (soff + length < doff) for (int i = 0; i < length; i++) dest[doff + i] = src[soff + i]; else for (int i = length - 1; i >= 0; i--) dest[doff + i] = src[soff + i]; } /** * SHA-3/Keccak hash algorithm implementation * * @author Mattias Andrée maandree@member.fsf.org */ class SHA3 : Object { /** * Round contants */ private static const int64[] RC = { 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L, 0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L, 0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL, 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L, 0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL, 0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L}; /** * Keccak-f round temporary */ private static int64[] B = new int64[25]; /** * Keccak-f round temporary */ private static int64[] C = new int64[5]; /** * The bitrate */ private static int r = 0; /** * The capacity */ private static int c = 0; /** * The output size */ private static int n = 0; /** * The state size */ private static int b = 0; /** * The word size */ private static int w = 0; /** * The word mask */ private static int64 wmod = 0; /** * ℓ, the binary logarithm of the word size */ private static int l = 0; /** * 12 + 2ℓ, the number of rounds */ private static int nr = 0; /** * The current state */ private static int64[] S = null; /** * Left over water to fill the sponge with at next update */ private static int8[] M = null; /** * Pointer for {@link #M} */ private static int mptr = 0; /** * Hidden constructor */ private SHA3() { // Inhibit instansiation } /** * Rotate a word * * @param x The value to rotate * @param n Rotation steps, may not be 0 * @return The value rotated */ private static int64 rotate(int64 x, int n) { int64 m = n % SHA3.w; return (((x >> (SHA3.w - m)) & ((1 << m) - 1)) + (x << m)) & SHA3.wmod; } /** * Rotate a 64-bit word * * @param x The value to rotate * @param n Rotation steps, may not be 0 * @return The value rotated */ private static int64 rotate64(int64 x, int n) { return ((x >> (64 - n)) & ((1 << n) - 1)) + (x << n); } /** * Binary logarithm * * @param x The value of which to calculate the binary logarithm * @return The binary logarithm */ private static int lb(int x) { return (((x & 0xFF00) == 0 ? 0 : 8) + ((x & 0xF0F0) == 0 ? 0 : 4)) + (((x & 0xCCCC) == 0 ? 0 : 2) + ((x & 0xAAAA) == 0 ? 0 : 1)); } /** * Perform one round of computation * * @param A The current state * @param rc Round constant */ private static void keccakFRound(int64[] A, int64 rc) { /* θ step (step 1 of 3) */ for (int i = 0, j = 0; i < 5; i++, j += 5) SHA3.C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4]; int64 da, db, dc, dd, de; if (SHA3.w == 64) { /* ρ and π steps, with last two part of θ */ SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1)); SHA3.B[1] = SHA3.rotate64(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1)), 28); SHA3.B[2] = SHA3.rotate64(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1)), 1); SHA3.B[3] = SHA3.rotate64(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1)), 27); SHA3.B[4] = SHA3.rotate64(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1)), 62); SHA3.B[5] = SHA3.rotate64(A[ 6] ^ db, 44); SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20); SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6); SHA3.B[8] = SHA3.rotate64(A[ 1] ^ da, 36); SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55); SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43); SHA3.B[11] = SHA3.rotate64(A[ 2] ^ da, 3); SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25); SHA3.B[13] = SHA3.rotate64(A[ 7] ^ db, 10); SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39); SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21); SHA3.B[16] = SHA3.rotate64(A[ 8] ^ db, 45); SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8); SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15); SHA3.B[19] = SHA3.rotate64(A[ 3] ^ da, 41); SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14); SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61); SHA3.B[22] = SHA3.rotate64(A[ 4] ^ da, 18); SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56); SHA3.B[24] = SHA3.rotate64(A[ 9] ^ db, 2); } else { /* ρ and π steps, with last two part of θ */ SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1)); SHA3.B[1] = SHA3.rotate(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1)), 28); SHA3.B[2] = SHA3.rotate(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1)), 1); SHA3.B[3] = SHA3.rotate(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1)), 27); SHA3.B[4] = SHA3.rotate(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1)), 62); SHA3.B[5] = SHA3.rotate(A[ 6] ^ db, 44); SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20); SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6); SHA3.B[8] = SHA3.rotate(A[ 1] ^ da, 36); SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55); SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43); SHA3.B[11] = SHA3.rotate(A[ 2] ^ da, 3); SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25); SHA3.B[13] = SHA3.rotate(A[ 7] ^ db, 10); SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39); SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21); SHA3.B[16] = SHA3.rotate(A[ 8] ^ db, 45); SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8); SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15); SHA3.B[19] = SHA3.rotate(A[ 3] ^ da, 41); SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14); SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61); SHA3.B[22] = SHA3.rotate(A[ 4] ^ da, 18); SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56); SHA3.B[24] = SHA3.rotate(A[ 9] ^ db, 2); } /* ξ step */ for (int i = 0; i < 15; i++) A[i ] = SHA3.B[i ] ^ ((~(SHA3.B[i + 5])) & SHA3.B[i + 10]); for (int i = 0; i < 5; i++) { A[i + 15] = SHA3.B[i + 15] ^ ((~(SHA3.B[i + 20])) & SHA3.B[i ]); A[i + 20] = SHA3.B[i + 20] ^ ((~(SHA3.B[i ])) & SHA3.B[i + 5]); } /* ι step */ A[0] ^= rc; } /** * Perform Keccak-f function * * @param A The current state */ private static void keccakF(int64[] A) { if (SHA3.nr == 24) for (int i = 0; i < 24; i++) SHA3.keccakFRound(A, SHA3.RC[i]); else for (int i = 0; i < SHA3.nr; i++) SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod); } /** * Convert a chunk of byte:s to a word * * @param message The message * @param rr Bitrate in bytes * @param ww Word size in bytes * @param off The offset in the message * @return Lane */ private static int64 toLane(int8[] message, int rr, int ww, int off) { int64 rc = 0; int n = message.length < rr ? message.length : rr; for (int i = off + ww - 1; i >= off; i--) rc = (rc << 8) | ((i < n) ? (int64)(message[i] & 255) : 0L); return rc; } /** * Convert a chunk of byte:s to a 64-bit word * * @param message The message * @param rr Bitrate in bytes * @param off The offset in the message * @return Lane */ private static int64 toLane64(int8[] message, int rr, int off) { int n = message.length < rr ? message.length : rr; return ((off + 7 < n) ? ((int64)(message[off + 7] & 255) << 56) : 0L) | ((off + 6 < n) ? ((int64)(message[off + 6] & 255) << 48) : 0L) | ((off + 5 < n) ? ((int64)(message[off + 5] & 255) << 40) : 0L) | ((off + 4 < n) ? ((int64)(message[off + 4] & 255) << 32) : 0L) | ((off + 3 < n) ? ((int64)(message[off + 3] & 255) << 24) : 0L) | ((off + 2 < n) ? ((int64)(message[off + 2] & 255) << 16) : 0L) | ((off + 1 < n) ? ((int64)(message[off + 1] & 255) << 8) : 0L) | ((off < n) ? ((int64)(message[off ] & 255) ) : 0L); } /** * pad 10*1 * * @param msg The message to pad * @parm len The length of the message * @param r The bitrate * @return The message padded */ private static int8[] pad10star1(int8[] msg, int len, int r) { int nrf = (len <<= 3) >> 3; int nbrf = len & 7; int ll = len % r; int8 b = (int8)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf))); int8[] message; if ((r - 8 <= ll) && (ll <= r - 2)) { message = new int8[len = nrf + 1]; message[nrf] = (int8)(b ^ 128); } else { len = (nrf + 1) << 3; len = ((len - (len % r) + (r - 8)) >> 3) + 1; message = new int8[len]; message[nrf] = b; message[len - 1] = (int8)(-128); } arraycopy(msg, 0, message, 0, nrf); return message; } /** * Initialise Keccak sponge * * @param r The bitrate * @param c The capacity * @param n The output size */ public static void initialise(int r, int c, int n) { SHA3.r = r; SHA3.c = c; SHA3.n = n; SHA3.b = r + c; SHA3.w = SHA3.b / 25; SHA3.l = SHA3.lb(SHA3.w); SHA3.nr = 12 + (SHA3.l << 1); SHA3.wmod = w == 64 ? -1L : (1L << SHA3.w) - 1L; SHA3.S = new int64[25]; SHA3.M = new int8[(SHA3.r * SHA3.b) >> 2]; SHA3.mptr = 0; } /** * Absorb the more of the message message to the Keccak sponge * * @param msg The partial message * @param msglen The length of the partial message */ public static void update(int8[] msg, int msglen) { int rr = SHA3.r >> 3; int ww = SHA3.w >> 3; if (SHA3.mptr + msglen > SHA3.M.length) arraycopy(SHA3.M, 0, SHA3.M = new int8[(SHA3.M.length + msglen) << 1], 0, SHA3.mptr); arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen); int len = SHA3.mptr += msglen; len -= len % ((SHA3.r * SHA3.b) >> 3); int8[] message; arraycopy(SHA3.M, 0, message = new int8[len], 0, len); arraycopy(SHA3.M, len, SHA3.M, 0, SHA3.mptr -= len); /* Absorbing phase */ if (ww == 8) for (int i = 0; i < len; i += rr) { SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0); SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8); SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16); SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24); SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32); SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40); SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48); SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56); SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64); SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72); SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80); SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88); SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96); SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104); SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112); SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120); SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128); SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136); SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144); SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152); SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160); SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168); SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176); SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184); SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192); SHA3.keccakF(SHA3.S); } else for (int i = 0; i < len; i += rr) { SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 ); SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w); SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w); SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w); SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w); SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w); SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w); SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w); SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w); SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w); SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w); SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w); SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w); SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w); SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w); SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w); SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w); SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w); SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w); SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w); SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w); SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w); SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w); SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w); SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w); SHA3.keccakF(SHA3.S); } } /** * Absorb the last part of the message and squeeze the Keccak sponge * * @param msg The rest of the message * @param msglen The length of the partial message */ public static int8[] digest(int8[] msg, int msglen) { int8[] message; if ((msg == null) || (msglen == 0)) message = SHA3.pad10star1(SHA3.M, SHA3.mptr, SHA3.r); else { if (SHA3.mptr + msglen > SHA3.M.length) arraycopy(SHA3.M, 0, SHA3.M = new int8[SHA3.M.length + msglen], 0, SHA3.mptr); arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen); message = SHA3.pad10star1(SHA3.M, SHA3.mptr + msglen, SHA3.r); } SHA3.M = null; int len = message.length; int8[] rc = new int8[(SHA3.n + 7) >> 3]; int ptr = 0; int rr = SHA3.r >> 3; int nn = SHA3.n >> 3; int ww = SHA3.w >> 3; /* Absorbing phase */ if (ww == 8) for (int i = 0; i < len; i += rr) { SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0); SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8); SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16); SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24); SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32); SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40); SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48); SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56); SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64); SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72); SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80); SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88); SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96); SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104); SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112); SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120); SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128); SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136); SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144); SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152); SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160); SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168); SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176); SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184); SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192); SHA3.keccakF(SHA3.S); } else for (int i = 0; i < len; i += rr) { SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 ); SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w); SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w); SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w); SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w); SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w); SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w); SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w); SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w); SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w); SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w); SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w); SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w); SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w); SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w); SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w); SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w); SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w); SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w); SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w); SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w); SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w); SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w); SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w); SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w); SHA3.keccakF(SHA3.S); } /* Squeezing phase */ int olen = SHA3.n; int j = 0; int ni = 25 < rr ? 25 : rr; while (olen > 0) { int i = 0; while ((i < ni) && (j < nn)) { int64 v = SHA3.S[(i % 5) * 5 + i / 5]; for (int _ = 0; _ < ww; _++) { if (j < nn) { rc[ptr] = (int8)v; ptr += 1; } v >>= 8; j += 1; } i += 1; } olen -= SHA3.r; if (olen > 0) SHA3.keccakF(S); } return rc; } } /** * This is the main entry point of the program * * @param args Command line arguments */ static int main(string[] cmdargs) { string[] HEXADECA = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"}; string cmd = cmdargs[0]; string[] argv = new string[cmdargs.length - 1]; arraycopy_string(cmdargs, 1, argv, 0, argv.length); if (cmd.contains("/")) cmd = cmd.substring(cmd.last_index_of("/") + 1); if (cmd.has_suffix(".jar")) cmd = cmd.substring(0, cmd.length - 4); int _o, o = _o = 512; /* --outputsize */ if (cmd == "sha3-224sum") o = _o = 224; else if (cmd == "sha3-256sum") o = _o = 256; else if (cmd == "sha3-384sum") o = _o = 384; else if (cmd == "sha3-512sum") o = _o = 512; int _s, s = _s = 1600; /* --statesize */ int _r, r = _r = s - (o << 1); /* --bitrate */ int _c, c = _c = s - r; /* --capacity */ int _w, w = _w = s / 25; /* --wordsize */ int _i, i = _i = 1; /* --iterations */ bool binary = false; string[] files = new string[argv.length + 1]; int fptr = 0; bool dashed = false; string[] linger = null; string[] args = new string[argv.length + 1]; arraycopy_string(argv, 0, args, 0, argv.length); for (int a = 0, an = args.length; a < an; a++) { string arg = args[a]; if (linger != null) { if ((linger[0] == "-h") || (linger[0] == "--help")) { stdout.printf("\n"); stdout.printf("SHA-3/Keccak checksum calculator\n"); stdout.printf("\n"); stdout.printf("USAGE: sha3sum [option...] < file\n"); stdout.printf(" sha3sum [option...] file...\n"); stdout.printf("\n"); stdout.printf("\n"); stdout.printf("OPTIONS:\n"); stdout.printf(" -r BITRATE\n"); stdout.printf(" --bitrate The bitrate to use for SHA-3. (default: %i)\n", _r); stdout.printf(" \n"); stdout.printf(" -c CAPACITY\n"); stdout.printf(" --capacity The capacity to use for SHA-3. (default: %i)\n", _c); stdout.printf(" \n"); stdout.printf(" -w WORDSIZE\n"); stdout.printf(" --wordsize The word size to use for SHA-3. (default: %i)\n", _w); stdout.printf(" \n"); stdout.printf(" -o OUTPUTSIZE\n"); stdout.printf(" --outputsize The output size to use for SHA-3. (default: %i)\n", _o); stdout.printf(" \n"); stdout.printf(" -s STATESIZE\n"); stdout.printf(" --statesize The state size to use for SHA-3. (default: %i)\n", _s); stdout.printf(" \n"); stdout.printf(" -i ITERATIONS\n"); stdout.printf(" --iterations The number of hash iterations to run. (default: %i)\n", _i); stdout.printf(" \n"); stdout.printf(" -b\n"); stdout.printf(" --binary Print the checksum in binary, rather than hexadecimal.\n"); stdout.printf("\n"); stdout.printf("\n"); stdout.printf("COPYRIGHT:\n"); stdout.printf("\n"); stdout.printf("Copyright © 2013 Mattias Andrée (maandree@member.fsf.org)\n"); stdout.printf("\n"); stdout.printf("This program is free software: you can redistribute it and/or modify\n"); stdout.printf("it under the terms of the GNU General Public License as published by\n"); stdout.printf("the Free Software Foundation, either version 3 of the License, or\n"); stdout.printf("(at your option) any later version.\n"); stdout.printf("\n"); stdout.printf("This program is distributed in the hope that it will be useful,\n"); stdout.printf("but WITHOUT ANY WARRANTY; without even the implied warranty of\n"); stdout.printf("MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n"); stdout.printf("GNU General Public License for more details.\n"); stdout.printf("\n"); stdout.printf("You should have received a copy of the GNU General Public License\n"); stdout.printf("along with this program. If not, see .\n"); stdout.printf("\n"); return 2; } else { if (linger[1] == null) { linger[1] = arg; arg = null; } if ((linger[0] == "-r") || (linger[0] == "--bitrate")) o = (s - (r = int.parse(linger[1]))) >> 1; else if ((linger[0] == "-c") || (linger[0] == "--capacity")) r = s - (c = int.parse(linger[1])); else if ((linger[0] == "-w") || (linger[0] == "--wordsize")) s = (w = int.parse(linger[1])) * 25; else if ((linger[0] == "-o") || (linger[0] == "--outputsize")) r = s - ((o = int.parse(linger[1])) << 1); else if ((linger[0] == "-s") || (linger[0] == "--statesize")) r = (s = int.parse(linger[1])) - (o << 1); else if ((linger[0] == "-i") || (linger[0] == "--iterations")) i = int.parse(linger[1]); else { stdout.printf("%s: unrecognised option: %s\n", cmd, linger[0]); return 1; } } linger = null; if (arg == null) continue; } if (arg == null) continue; if (dashed) files[fptr++] = arg == "-" ? null : arg; else if (arg == "--") dashed = true; else if (arg == "-") files[fptr++] = null; else if (arg.has_prefix("--")) if (arg.contains("=")) linger = new string[] { arg.substring(0, arg.index_of("=")), arg.substring(arg.index_of("=") + 1) }; else if (arg == "--binary") binary = true; else linger = new string[] { arg, null }; else if (arg.has_prefix("-")) { arg = arg.substring(1); if (arg[0] == 'b') { binary = true; arg = arg.substring(1); } else if (arg.length == 1) linger = new string[] { "-" + arg, null }; else linger = new string[] { "-" + arg[0].to_string(), arg.substring(1) }; } else files[fptr++] = arg; } if (fptr == 0) files[fptr++] = null; if (i < 1) { stderr.printf("%s: sorry, I will only do at least one iteration!\n", cmd); return 3; } int8[] stdin = null; bool fail = false; string filename; for (int f = 0; f < fptr; f++) { if (((filename = files[f]) == null) && (stdin != null)) { System.out.write(stdin); continue; } string rc = ""; string fn = filename == null ? "/dev/stdin" : filename; FileStream file = null; try { file = FileStream.open(fn, "r"); if (file == null) { stderr.printf("%s: cannot read file: %s\n", cmd, filename); fail = true; continue; } SHA3.initialise(r, c, o); int blksize = 4096; /** XXX os.stat(os.path.realpath(fn)).st_size; **/ int8[] chunk = new int8[blksize]; for (;;) { int read = file.read(chunk, 0, blksize); if (read <= 0) break; SHA3.update(chunk, read); } int8[] bs = SHA3.digest(null, 0); for (int _ = 1; _ < i; _++) { SHA3.initialise(r, c, o); bs = SHA3.digest(bs, bs.length); } if (binary) { if (filename == null) stdin = bs; System.out.write(bs); stdout.flush(); } else { for (int b = 0, bn = bs.length; b < bn; b++) { rc += HEXADECA[(bs[b] >> 4) & 15]; rc += HEXADECA[bs[b] & 15]; } rc += " " + (filename == null ? "-" : filename) + "\n"; if (filename == null) stdin = rc.getBytes("UTF-8"); stdout.printf("%s", rc); stdout.flush(); } } catch { stderr.printf("%s: cannot read file: %s\n", cmd, filename); fail = true; } finally { if (file != null) { try { file.close(); } catch { /* ignore */ } } } } stdout.flush(); if (fail) return 5; return 0; }