#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
sha3sum – SHA-3 (Keccak) checksum calculator
Copyright © 2013 Mattias Andrée (maandree@member.fsf.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
'''
import sys
import os
class SHA3:
'''
SHA-3/Keccak hash algorithm implementation
@author Mattias Andrée (maandree@member.fsf.org)
'''
RC=[0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000,
0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A,
0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003,
0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A,
0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008]
'''
:list Round contants
'''
B = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
'''
:list> Keccak-f round temporary
'''
C = [0, 0, 0, 0, 0]
'''
:list Keccak-f round temporary
'''
D = [0, 0, 0, 0, 0]
'''
:list Keccak-f round temporary
'''
r = 0
'''
:int The bitrate
'''
c = 0
'''
:int The capacity
'''
n = 0
'''
:int The output size
'''
b = 0
'''
:int The state size
'''
w = 0
'''
:int The word size
'''
wmod = 0
'''
:int The word mask
'''
l = 0
'''
:int ℓ, the binary logarithm of the word size
'''
nr = 0
'''
:int 12 + 2ℓ, the number of rounds
'''
S = None
'''
:list> The current state
'''
M = None
'''
:bytes Left over water to fill the sponge with at next update
'''
@staticmethod
def rotate(x, n):
'''
Rotate a word
@param x:int The value to rotate
@param n:int Rotation steps
@return :int The value rotated
'''
return ((x >> (SHA3.w - (n % SHA3.w))) + (x << (n % SHA3.w))) & SHA3.wmod
@staticmethod
def lb(x):
'''
Binary logarithm
@param x:int The value of which to calculate the binary logarithm
@return :int The binary logarithm
'''
rc_a = 0 if (x & 0xFF00) == 0 else 8
rc_b = 0 if (x & 0xF0F0) == 0 else 4
rc_c = 0 if (x & 0xCCCC) == 0 else 2
rc_d = 0 if (x & 0xAAAA) == 0 else 1
return (rc_a + rc_b) + (rc_c + rc_d)
@staticmethod
def keccakFRound(A, rc):
'''
Perform one round of computation
@param A:list The current state
@param rc:int Round constant
'''
# θ step
SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4]
SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9]
SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14]
SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19]
SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24]
SHA3.D[0] = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1)
SHA3.D[1] = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1)
SHA3.D[2] = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1)
SHA3.D[3] = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1)
SHA3.D[4] = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1)
A[0] ^= SHA3.D[0]
A[5] ^= SHA3.D[1]
A[10] ^= SHA3.D[2]
A[15] ^= SHA3.D[3]
A[20] ^= SHA3.D[4]
A[1] ^= SHA3.D[0]
A[6] ^= SHA3.D[1]
A[11] ^= SHA3.D[2]
A[16] ^= SHA3.D[3]
A[21] ^= SHA3.D[4]
A[2] ^= SHA3.D[0]
A[7] ^= SHA3.D[1]
A[12] ^= SHA3.D[2]
A[17] ^= SHA3.D[3]
A[22] ^= SHA3.D[4]
A[3] ^= SHA3.D[0]
A[8] ^= SHA3.D[1]
A[13] ^= SHA3.D[2]
A[18] ^= SHA3.D[3]
A[23] ^= SHA3.D[4]
A[4] ^= SHA3.D[0]
A[9] ^= SHA3.D[1]
A[14] ^= SHA3.D[2]
A[19] ^= SHA3.D[3]
A[24] ^= SHA3.D[4]
# ρ and π steps
SHA3.B[0][0] = SHA3.rotate(A[0], 0)
SHA3.B[0][2] = SHA3.rotate(A[5], 1)
SHA3.B[0][4] = SHA3.rotate(A[10], 62)
SHA3.B[0][1] = SHA3.rotate(A[15], 28)
SHA3.B[0][3] = SHA3.rotate(A[20], 27)
SHA3.B[1][3] = SHA3.rotate(A[1], 36)
SHA3.B[1][0] = SHA3.rotate(A[6], 44)
SHA3.B[1][2] = SHA3.rotate(A[11], 6)
SHA3.B[1][4] = SHA3.rotate(A[16], 55)
SHA3.B[1][1] = SHA3.rotate(A[21], 20)
SHA3.B[2][1] = SHA3.rotate(A[2], 3)
SHA3.B[2][3] = SHA3.rotate(A[7], 10)
SHA3.B[2][0] = SHA3.rotate(A[12], 43)
SHA3.B[2][2] = SHA3.rotate(A[17], 25)
SHA3.B[2][4] = SHA3.rotate(A[22], 39)
SHA3.B[3][4] = SHA3.rotate(A[3], 41)
SHA3.B[3][1] = SHA3.rotate(A[8], 45)
SHA3.B[3][3] = SHA3.rotate(A[13], 15)
SHA3.B[3][0] = SHA3.rotate(A[18], 21)
SHA3.B[3][2] = SHA3.rotate(A[23], 8)
SHA3.B[4][2] = SHA3.rotate(A[4], 18)
SHA3.B[4][4] = SHA3.rotate(A[9], 2)
SHA3.B[4][1] = SHA3.rotate(A[14], 61)
SHA3.B[4][3] = SHA3.rotate(A[19], 56)
SHA3.B[4][0] = SHA3.rotate(A[24], 14)
# ξ step
A[0] = SHA3.B[0][0] ^ ((~(SHA3.B[1][0])) & SHA3.B[2][0])
A[1] = SHA3.B[0][1] ^ ((~(SHA3.B[1][1])) & SHA3.B[2][1])
A[2] = SHA3.B[0][2] ^ ((~(SHA3.B[1][2])) & SHA3.B[2][2])
A[3] = SHA3.B[0][3] ^ ((~(SHA3.B[1][3])) & SHA3.B[2][3])
A[4] = SHA3.B[0][4] ^ ((~(SHA3.B[1][4])) & SHA3.B[2][4])
A[5] = SHA3.B[1][0] ^ ((~(SHA3.B[2][0])) & SHA3.B[3][0])
A[6] = SHA3.B[1][1] ^ ((~(SHA3.B[2][1])) & SHA3.B[3][1])
A[7] = SHA3.B[1][2] ^ ((~(SHA3.B[2][2])) & SHA3.B[3][2])
A[8] = SHA3.B[1][3] ^ ((~(SHA3.B[2][3])) & SHA3.B[3][3])
A[9] = SHA3.B[1][4] ^ ((~(SHA3.B[2][4])) & SHA3.B[3][4])
A[10] = SHA3.B[2][0] ^ ((~(SHA3.B[3][0])) & SHA3.B[4][0])
A[11] = SHA3.B[2][1] ^ ((~(SHA3.B[3][1])) & SHA3.B[4][1])
A[12] = SHA3.B[2][2] ^ ((~(SHA3.B[3][2])) & SHA3.B[4][2])
A[13] = SHA3.B[2][3] ^ ((~(SHA3.B[3][3])) & SHA3.B[4][3])
A[14] = SHA3.B[2][4] ^ ((~(SHA3.B[3][4])) & SHA3.B[4][4])
A[15] = SHA3.B[3][0] ^ ((~(SHA3.B[4][0])) & SHA3.B[0][0])
A[16] = SHA3.B[3][1] ^ ((~(SHA3.B[4][1])) & SHA3.B[0][1])
A[17] = SHA3.B[3][2] ^ ((~(SHA3.B[4][2])) & SHA3.B[0][2])
A[18] = SHA3.B[3][3] ^ ((~(SHA3.B[4][3])) & SHA3.B[0][3])
A[19] = SHA3.B[3][4] ^ ((~(SHA3.B[4][4])) & SHA3.B[0][4])
A[20] = SHA3.B[4][0] ^ ((~(SHA3.B[0][0])) & SHA3.B[1][0])
A[21] = SHA3.B[4][1] ^ ((~(SHA3.B[0][1])) & SHA3.B[1][1])
A[22] = SHA3.B[4][2] ^ ((~(SHA3.B[0][2])) & SHA3.B[1][2])
A[23] = SHA3.B[4][3] ^ ((~(SHA3.B[0][3])) & SHA3.B[1][3])
A[24] = SHA3.B[4][4] ^ ((~(SHA3.B[0][4])) & SHA3.B[1][4])
# ι step
A[0] ^= rc
@staticmethod
def keccakF(A):
'''
Perform Keccak-f function
@param A:list The current state
'''
for i in range(SHA3.nr):
SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod)
@staticmethod
def toLane(message, rr, ww, off):
'''
Convert a chunk of char:s to a word
@param message:bytes The message
@param rr:int Bitrate in bytes
@param ww:int Word size in bytes
@param off:int The offset in the message
@return :int Lane
'''
rc = 0
i = off + ww - 1
n = len(message)
while i >= off:
rc <<= 8
rc |= message[i] if (i < rr) and (i < n) else 0
i -= 1
return rc
@staticmethod
def pad10star1(msg, r):
'''
pad 10*1
@param msg:bytes The message to pad
@param n:int The The message to pad
@param r:int The bitrate
@return :str The message padded
'''
nnn = len(msg)
nrf = nnn >> 3
nbrf = nnn & 7
ll = nnn % r
bbbb = 1 if nbrf == 0 else ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf))
message = None
if ((r - 8 <= ll) and (ll <= r - 2)):
nnn = nrf + 1
message = [bbbb ^ 128]
else:
nnn = (nrf + 1) << 3
nnn = ((nnn - (nnn % r) + (r - 8)) >> 3) + 1
message = [0] * (nnn - nrf)
message[0] = bbbb
i = nrf + 1
while i < nnn:
message[i - nrf] = 0
i += 1
message[nnn - nrf - 1] = 0x80
return msg[:nrf] + bytes(message)
@staticmethod
def initalise(r, c, n):
'''
Initalise Keccak sponge
@param r:int The bitrate
@param c:int The capacity
@param n:int The output size
'''
SHA3.r = r
SHA3.c = c
SHA3.n = n
SHA3.b = (r + c)
SHA3.w = SHA3.b // 25
SHA3.l = SHA3.lb(SHA3.w)
SHA3.nr = 12 + (SHA3.l << 1)
SHA3.wmod = (1 << SHA3.w) - 1
SHA3.S=[0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0]
SHA3.M = bytes([])
@staticmethod
def update(msg):
'''
Absorb the more of the message message to the Keccak sponge
@param msg:bytes The partial message
'''
rr = SHA3.r >> 3
ww = SHA3.w >> 3
SHA3.M += msg
SHA3.pad10star1(SHA3.M, SHA3.r)
nnn = len(SHA3.M)
nnn -= nnn % ((SHA3.r * SHA3.b) >> 3)
message = SHA3.M[:nnn]
SHA3.M = SHA3.M[nnn:]
# Absorbing phase
msg_i =[0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0]
m = nnn
for i in range(0, m, rr):
for j in range(25):
SHA3.S[j] ^= SHA3.toLane(message[i:], rr, ww, j * ww)
SHA3.keccakF(SHA3.S)
@staticmethod
def digest(msg = None):
'''
Absorb the last part of the message and squeeze the Keccak sponge
@param msg:bytes The rest of the message
'''
if msg is None:
msg = bytes([])
message = SHA3.pad10star1(SHA3.M + msg, SHA3.r)
SHA3.M = None
nnn = len(message)
rc = [0] * ((SHA3.n + 7) >> 3)
ptr = 0
rr = SHA3.r >> 3
nn = SHA3.n >> 3
ww = SHA3.w >> 3
# Absorbing phase
msg_i =[0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0]
m = nnn
for i in range(0, m, rr):
for j in range(25):
SHA3.S[j] ^= SHA3.toLane(message[i:], rr, ww, j * ww)
SHA3.keccakF(SHA3.S)
# Squeezing phase
olen = SHA3.n
j = 0
ni = min(25, rr)
while (olen > 0):
i = 0
while i < ni and (j < nn):
v = SHA3.S[i]
for _ in range(ww):
if (j < nn):
rc[ptr] = v & 255
ptr += 1
v >>= 8
j += 1
i += 1
olen -= SHA3.r
if olen > 0:
SHA3.keccakF(S)
return bytes(rc)
if __name__ == '__main__':
cmd = sys.argv[0]
args = sys.argv[1:]
if '/' in cmd:
cmd = cmd[cmd.rfind('/') + 1:]
if cmd.endswith('.py'):
cmd = cmd[:-3]
o = 512 # --outputsize
if cmd == 'sha3-224sum': o = 224
elif cmd == 'sha3-256sum': o = 256
elif cmd == 'sha3-384sum': o = 384
elif cmd == 'sha3-512sum': o = 512
s = 1600 # --statesize
r = s - (o << 1) # --bitrate
c = s - r # --capacity
w = s // 25 # --wordsize
i = 1 # --iterations
binary = False
(_r, _c, _w, _o, _s, _i) = (r, c, w, o, s, i)
files = []
dashed = False
linger = None
for arg in args + [None]:
if linger is not None:
if linger[0] in ('-h', '--help'):
sys.stderr.buffer.write(('''
SHA-3/Keccak checksum calculator
USAGE: sha3sum [option...] < file
sha3sum [option...] file...
OPTIONS:
-r BITRATE
--bitrate The bitrate to use for SHA-3. (default: %d)
-c CAPACITY
--capacity The capacity to use for SHA-3. (default: %d)
-w WORDSIZE
--wordsize The word size to use for SHA-3. (default: %d)
-o OUTPUTSIZE
--outputsize The output size to use for SHA-3. (default: %d)
-s STATESIZE
--statesize The state size to use for SHA-3. (default: %d)
-i ITERATIONS
--iterations The number of hash iterations to run. (default: %d)
-b
--binary Print the checksum in binary, rather than hexadecimal.
COPYRIGHT:
Copyright © 2013 Mattias Andrée (maandree@member.fsf.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
''' % (_r, _c, _w, _o, _s, _i)).encode('utf-8'))
sys.stderr.buffer.flush()
exit(2)
else:
if linger[1] is None:
linger[1] = arg
arg = None
if linger[0] in ('-r', '--bitrate'):
r = int(linger[1])
o = (s - r) >> 1
elif linger[0] in ('-c', '--capacity'):
c = int(linger[1])
r = s - c
elif linger[0] in ('-w', '--wordsize'):
w = int(linger[1])
s = w * 25
elif linger[0] in ('-o', '--outputsize'):
o = int(linger[1])
r = s - (o << 1)
elif linger[0] in ('-s', '--statesize'):
s = int(linger[1])
r = s - (o << 1)
elif linger[0] in ('-i', '--iterations'):
i = int(linger[1])
else:
sys.stderr.buffer.write((sys.argv[0] + ': unrecognised option: ' + linger[0] + '\n').encode('utf-8'))
sys.stdout.buffer.flush()
exit(1)
linger = None
if arg is None:
continue
if arg is None:
continue
if dashed:
files.append(None if arg == '-' else arg)
elif arg == '--':
dashed = True
elif arg == '-':
files.append(None)
elif arg.startswith('--'):
if '=' in arg:
linger = (arg[:arg.find('=')], arg[arg.find('=') + 1:])
else:
if arg == '--binary':
binary = True
else:
linger = [arg, None]
elif arg.startswith('-'):
arg = arg[1:]
if arg[0] == 'b':
binary = True
arg = arg[1:]
elif len(arg) == 1:
linger = ['-' + arg, None]
else:
linger = ['-' + arg[0], arg[1:]]
else:
files.append(arg)
if len(files) == 0:
files.append(None)
if i < 1:
sys.stdout.buffer.write((sys.argv[0] + ': sorry, I will only do at least one iteration!\n').encode('utf-8'))
sys.stdout.buffer.flush()
exit(3)
stdin = None
for filename in files:
if (filename is None) and (stdin is not None):
print(stdin)
continue
rc = ''
fn = '/dev/stdin' if filename is None else filename
with open(fn, 'rb') as file:
SHA3.initalise(r, c, o)
blksize = os.stat(os.path.realpath(fn)).st_size
SHA3.update(file.read(blksize))
bs = SHA3.digest(file.read())
for _ in range(1, i):
SHA3.initalise(r, c, o)
bs = SHA3.digest(bs)
if binary:
if filename is None:
stdin = bs
sys.stdout.buffer.write(bs)
sys.stdout.buffer.flush()
else:
for b in bs:
rc += "0123456789ABCDEF"[b >> 4]
rc += "0123456789ABCDEF"[b & 15]
rc += ' ' + ('-' if filename is None else filename) + '\n'
if filename is None:
stdin = rc
sys.stdout.buffer.write(rc.encode('UTF-8'))
sys.stdout.buffer.flush()