#!/usr/bin/env python # -*- coding: utf-8 -*- ''' sha3sum – SHA-3 (Keccak) checksum calculator Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ''' import sys import os class SHA3: ''' SHA-3/Keccak hash algorithm implementation @author Mattias Andrée (maandree@member.fsf.org) ''' RC=[0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000, 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A, 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008] ''' :list Round contants ''' R=[0, 36, 3, 41, 18, 1, 44, 10, 45, 2, 62, 6, 43, 15, 61, 28, 55, 25, 21, 56, 27, 20, 39, 8, 14] B = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] ''' :list> Keccak-f round temporary ''' C = [0, 0, 0, 0, 0] ''' :list Keccak-f round temporary ''' D = [0, 0, 0, 0, 0] ''' :list Keccak-f round temporary ''' r = 0 ''' :int The bitrate ''' c = 0 ''' :int The capacity ''' n = 0 ''' :int The output size ''' b = 0 ''' :int The state size ''' w = 0 ''' :int The word size ''' wmod = 0 ''' :int The word mask ''' l = 0 ''' :int ℓ, the binary logarithm of the word size ''' nr = 0 ''' :int 12 + 2ℓ, the number of rounds ''' S = None ''' :list> The current state ''' M = None ''' :bytes Left over water to fill the sponge with at next update ''' @staticmethod def rotate(x, n): ''' Rotate a word @param x:int The value to rotate @param n:int Rotation steps @return :int The value rotated ''' return ((x >> (SHA3.w - (n % SHA3.w))) + (x << (n % SHA3.w))) & SHA3.wmod @staticmethod def lb(x): ''' Binary logarithm @param x:int The value of which to calculate the binary logarithm @return :int The binary logarithm ''' rc_a = 0 if (x & 0xFF00) == 0 else 8 rc_b = 0 if (x & 0xF0F0) == 0 else 4 rc_c = 0 if (x & 0xCCCC) == 0 else 2 rc_d = 0 if (x & 0xAAAA) == 0 else 1 return (rc_a + rc_b) + (rc_c + rc_d) @staticmethod def keccakFRound(A, rc): ''' Perform one round of computation @param A:list> The current state @param rc:int Round constant ''' # θ step for x in range(5): SHA3.C[x] = (A[x][0] ^ A[x][1]) ^ (A[x][2] ^ A[x][3]) ^ A[x][4] SHA3.D[0] = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1) SHA3.D[1] = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1) SHA3.D[2] = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1) SHA3.D[3] = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1) SHA3.D[4] = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1) for x in range(5): for y in range(5): A[x][y] ^= SHA3.D[x] # ρ and π steps SHA3.B[0][0] = SHA3.rotate(A[0][0], 0) SHA3.B[0][2] = SHA3.rotate(A[1][0], 1) SHA3.B[0][4] = SHA3.rotate(A[2][0], 62) SHA3.B[0][1] = SHA3.rotate(A[3][0], 28) SHA3.B[0][3] = SHA3.rotate(A[4][0], 27) SHA3.B[1][3] = SHA3.rotate(A[0][1], 36) SHA3.B[1][0] = SHA3.rotate(A[1][1], 44) SHA3.B[1][2] = SHA3.rotate(A[2][1], 6) SHA3.B[1][4] = SHA3.rotate(A[3][1], 55) SHA3.B[1][1] = SHA3.rotate(A[4][1], 20) SHA3.B[2][1] = SHA3.rotate(A[0][2], 3) SHA3.B[2][3] = SHA3.rotate(A[1][2], 10) SHA3.B[2][0] = SHA3.rotate(A[2][2], 43) SHA3.B[2][2] = SHA3.rotate(A[3][2], 25) SHA3.B[2][4] = SHA3.rotate(A[4][2], 39) SHA3.B[3][4] = SHA3.rotate(A[0][3], 41) SHA3.B[3][1] = SHA3.rotate(A[1][3], 45) SHA3.B[3][3] = SHA3.rotate(A[2][3], 15) SHA3.B[3][0] = SHA3.rotate(A[3][3], 21) SHA3.B[3][2] = SHA3.rotate(A[4][3], 8) SHA3.B[4][2] = SHA3.rotate(A[0][4], 18) SHA3.B[4][4] = SHA3.rotate(A[1][4], 2) SHA3.B[4][1] = SHA3.rotate(A[2][4], 61) SHA3.B[4][3] = SHA3.rotate(A[3][4], 56) SHA3.B[4][0] = SHA3.rotate(A[4][4], 14) # ξ step A[0][0] = SHA3.B[0][0] ^ ((~(SHA3.B[1][0])) & SHA3.B[2][0]) A[0][1] = SHA3.B[0][1] ^ ((~(SHA3.B[1][1])) & SHA3.B[2][1]) A[0][2] = SHA3.B[0][2] ^ ((~(SHA3.B[1][2])) & SHA3.B[2][2]) A[0][3] = SHA3.B[0][3] ^ ((~(SHA3.B[1][3])) & SHA3.B[2][3]) A[0][4] = SHA3.B[0][4] ^ ((~(SHA3.B[1][4])) & SHA3.B[2][4]) A[1][0] = SHA3.B[1][0] ^ ((~(SHA3.B[2][0])) & SHA3.B[3][0]) A[1][1] = SHA3.B[1][1] ^ ((~(SHA3.B[2][1])) & SHA3.B[3][1]) A[1][2] = SHA3.B[1][2] ^ ((~(SHA3.B[2][2])) & SHA3.B[3][2]) A[1][3] = SHA3.B[1][3] ^ ((~(SHA3.B[2][3])) & SHA3.B[3][3]) A[1][4] = SHA3.B[1][4] ^ ((~(SHA3.B[2][4])) & SHA3.B[3][4]) A[2][0] = SHA3.B[2][0] ^ ((~(SHA3.B[3][0])) & SHA3.B[4][0]) A[2][1] = SHA3.B[2][1] ^ ((~(SHA3.B[3][1])) & SHA3.B[4][1]) A[2][2] = SHA3.B[2][2] ^ ((~(SHA3.B[3][2])) & SHA3.B[4][2]) A[2][3] = SHA3.B[2][3] ^ ((~(SHA3.B[3][3])) & SHA3.B[4][3]) A[2][4] = SHA3.B[2][4] ^ ((~(SHA3.B[3][4])) & SHA3.B[4][4]) A[3][0] = SHA3.B[3][0] ^ ((~(SHA3.B[4][0])) & SHA3.B[0][0]) A[3][1] = SHA3.B[3][1] ^ ((~(SHA3.B[4][1])) & SHA3.B[0][1]) A[3][2] = SHA3.B[3][2] ^ ((~(SHA3.B[4][2])) & SHA3.B[0][2]) A[3][3] = SHA3.B[3][3] ^ ((~(SHA3.B[4][3])) & SHA3.B[0][3]) A[3][4] = SHA3.B[3][4] ^ ((~(SHA3.B[4][4])) & SHA3.B[0][4]) A[4][0] = SHA3.B[4][0] ^ ((~(SHA3.B[0][0])) & SHA3.B[1][0]) A[4][1] = SHA3.B[4][1] ^ ((~(SHA3.B[0][1])) & SHA3.B[1][1]) A[4][2] = SHA3.B[4][2] ^ ((~(SHA3.B[0][2])) & SHA3.B[1][2]) A[4][3] = SHA3.B[4][3] ^ ((~(SHA3.B[0][3])) & SHA3.B[1][3]) A[4][4] = SHA3.B[4][4] ^ ((~(SHA3.B[0][4])) & SHA3.B[1][4]) # ι step A[0][0] ^= rc @staticmethod def keccakF(A): ''' Perform Keccak-f function @param A:list> The current state ''' for i in range(SHA3.nr): SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod) @staticmethod def toLane(message, rr, ww, off): ''' Convert a chunk of char:s to a word @param message:bytes The message @param rr:int Bitrate in bytes @param ww:int Word size in bytes @param off:int The offset in the message @return :int Lane ''' rc = 0 i = off + ww - 1 n = len(message) while i >= off: rc <<= 8 rc |= message[i] if (i < rr) and (i < n) else 0 i -= 1 return rc @staticmethod def pad10star1(msg, r): ''' pad 10*1 @param msg:bytes The message to pad @param n:int The The message to pad @param r:int The bitrate @return :str The message padded ''' nnn = len(msg) nrf = nnn >> 3 nbrf = nnn & 7 ll = nnn % r bbbb = 1 if nbrf == 0 else ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)) message = None if ((r - 8 <= ll) and (ll <= r - 2)): nnn = nrf + 1 message = [bbbb ^ 128] else: nnn = (nrf + 1) << 3 nnn = ((nnn - (nnn % r) + (r - 8)) >> 3) + 1 message = [0] * (nnn - nrf) message[0] = bbbb i = nrf + 1 while i < nnn: message[i - nrf] = 0 i += 1 message[nnn - nrf - 1] = 0x80 return msg[:nrf] + bytes(message) @staticmethod def initalise(r, c, n): ''' Initalise Keccak sponge @param r:int The bitrate @param c:int The capacity @param n:int The output size ''' SHA3.r = r SHA3.c = c SHA3.n = n SHA3.b = (r + c) SHA3.w = SHA3.b // 25 SHA3.l = SHA3.lb(SHA3.w) SHA3.nr = 12 + (SHA3.l << 1) SHA3.wmod = (1 << SHA3.w) - 1 SHA3.S=[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] SHA3.M = bytes([]) @staticmethod def update(msg): ''' Absorb the more of the message message to the Keccak sponge @param msg:bytes The partial message ''' rr = SHA3.r >> 3 ww = SHA3.w >> 3 SHA3.M += msg SHA3.pad10star1(SHA3.M, SHA3.r) nnn = len(SHA3.M) nnn -= nnn % ((SHA3.r * SHA3.b) >> 3) message = SHA3.M[:nnn] SHA3.M = SHA3.M[nnn:] # Absorbing phase msg_i =[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] m = nnn for i in range(0, m, rr): for j in range(25): SHA3.S[j % 5][j // 5] ^= SHA3.toLane(message[i:], rr, ww, j * ww) SHA3.keccakF(SHA3.S) @staticmethod def digest(msg = None): ''' Absorb the last part of the message and squeeze the Keccak sponge @param msg:bytes The rest of the message ''' if msg is None: msg = bytes([]) message = SHA3.pad10star1(SHA3.M + msg, SHA3.r) SHA3.M = None nnn = len(message) rc = [0] * ((SHA3.n + 7) >> 3) ptr = 0 rr = SHA3.r >> 3 nn = SHA3.n >> 3 ww = SHA3.w >> 3 # Absorbing phase msg_i =[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] m = nnn for i in range(0, m, rr): for j in range(25): SHA3.S[j % 5][j // 5] ^= SHA3.toLane(message[i:], rr, ww, j * ww) SHA3.keccakF(SHA3.S) # Squeezing phase olen = SHA3.n j = 0 ni = min(25, rr) while (olen > 0): i = 0 while i < ni and (j < nn): v = SHA3.S[i % 5][i // 5] for _ in range(ww): if (j < nn): rc[ptr] = v & 255 ptr += 1 v >>= 8 j += 1 i += 1 olen -= SHA3.r if olen > 0: SHA3.keccakF(S) return bytes(rc) if __name__ == '__main__': cmd = sys.argv[0] args = sys.argv[1:] if '/' in cmd: cmd = cmd[cmd.rfind('/') + 1:] if cmd.endswith('.py'): cmd = cmd[:-3] o = 512 # --outputsize if cmd == 'sha3-224sum': o = 224 elif cmd == 'sha3-256sum': o = 256 elif cmd == 'sha3-384sum': o = 384 elif cmd == 'sha3-512sum': o = 512 s = 1600 # --statesize r = s - (o << 1) # --bitrate c = s - r # --capacity w = s // 25 # --wordsize i = 1 # --iterations binary = False (_r, _c, _w, _o, _s, _i) = (r, c, w, o, s, i) files = [] dashed = False linger = None for arg in args + [None]: if linger is not None: if linger[0] in ('-h', '--help'): sys.stderr.buffer.write((''' SHA-3/Keccak checksum calculator USAGE: sha3sum [option...] < file sha3sum [option...] file... OPTIONS: -r BITRATE --bitrate The bitrate to use for SHA-3. (default: %d) -c CAPACITY --capacity The capacity to use for SHA-3. (default: %d) -w WORDSIZE --wordsize The word size to use for SHA-3. (default: %d) -o OUTPUTSIZE --outputsize The output size to use for SHA-3. (default: %d) -s STATESIZE --statesize The state size to use for SHA-3. (default: %d) -i ITERATIONS --iterations The number of hash iterations to run. (default: %d) -b --binary Print the checksum in binary, rather than hexadecimal. COPYRIGHT: Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ''' % (_r, _c, _w, _o, _s, _i)).encode('utf-8')) sys.stderr.buffer.flush() exit(2) else: if linger[1] is None: linger[1] = arg arg = None if linger[0] in ('-r', '--bitrate'): r = int(linger[1]) o = (s - r) >> 1 elif linger[0] in ('-c', '--capacity'): c = int(linger[1]) r = s - c elif linger[0] in ('-w', '--wordsize'): w = int(linger[1]) s = w * 25 elif linger[0] in ('-o', '--outputsize'): o = int(linger[1]) r = s - (o << 1) elif linger[0] in ('-s', '--statesize'): s = int(linger[1]) r = s - (o << 1) elif linger[0] in ('-i', '--iterations'): i = int(linger[1]) else: sys.stderr.buffer.write((sys.argv[0] + ': unrecognised option: ' + linger[0] + '\n').encode('utf-8')) sys.stdout.buffer.flush() exit(1) linger = None if arg is None: continue if arg is None: continue if dashed: files.append(None if arg == '-' else arg) elif arg == '--': dashed = True elif arg == '-': files.append(None) elif arg.startswith('--'): if '=' in arg: linger = (arg[:arg.find('=')], arg[arg.find('=') + 1:]) else: if arg == '--binary': binary = True else: linger = [arg, None] elif arg.startswith('-'): arg = arg[1:] if arg[0] == 'b': binary = True arg = arg[1:] elif len(arg) == 1: linger = ['-' + arg, None] else: linger = ['-' + arg[0], arg[1:]] else: files.append(arg) if len(files) == 0: files.append(None) if i < 1: sys.stdout.buffer.write((sys.argv[0] + ': sorry, I will only do at least one iteration!\n').encode('utf-8')) sys.stdout.buffer.flush() exit(3) stdin = None for filename in files: if (filename is None) and (stdin is not None): print(stdin) continue rc = '' fn = '/dev/stdin' if filename is None else filename with open(fn, 'rb') as file: SHA3.initalise(r, c, o) blksize = os.stat(os.path.realpath(fn)).st_size SHA3.update(file.read(blksize)) bs = SHA3.digest(file.read()) for _ in range(1, i): SHA3.initalise(r, c, o) bs = SHA3.digest(bs) if binary: if filename is None: stdin = bs sys.stdout.buffer.write(bs) sys.stdout.buffer.flush() else: for b in bs: rc += "0123456789ABCDEF"[b >> 4] rc += "0123456789ABCDEF"[b & 15] rc += ' ' + ('-' if filename is None else filename) + '\n' if filename is None: stdin = rc sys.stdout.buffer.write(rc.encode('UTF-8')) sys.stdout.buffer.flush()