#!/usr/bin/env python # -*- coding: utf-8 -*- ''' sha3sum – SHA-3 (Keccak) checksum calculator Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ''' import sys import os class SHA3: ''' SHA-3/Keccak hash algorithm implementation @author Mattias Andrée (maandree@member.fsf.org) ''' RC=[0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000, 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A, 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008] ''' :list Round contants ''' B = [0] * 25 ''' :list Keccak-f round temporary ''' C = [0] * 5 ''' :list Keccak-f round temporary ''' (r, c, n, b, w, wmod, l, nr) = (0, 0, 0, 0, 0, 0, 0, 0) ''' r:int The bitrate c:int The capacity n:int The output size b:int The state size w:int The word size wmod:int The word mask l:int ℓ, the binary logarithm of the word size nr:int 12 + 2ℓ, the number of rounds ''' S = None ''' :list The current state ''' M = None ''' :bytes Left over water to fill the sponge with at next update ''' @staticmethod def rotate(x, n): ''' Rotate a word @param x:int The value to rotate @param n:int Rotation steps @return :int The value rotated ''' m = n % SHA3.w return ((x >> (SHA3.w - m)) + (x << m)) & SHA3.wmod @staticmethod def rotate64(x, n): ''' Rotate a 64-bit word @param x:int The value to rotate @param n:int Rotation steps @return :int The value rotated ''' return ((x >> (SHA3.w - n)) + (x << n)) & 0xFFFFFFFFFFFFFFFF @staticmethod def lb(x): ''' Binary logarithm @param x:int The value of which to calculate the binary logarithm @return :int The binary logarithm ''' return ((0 if (x & 0xFF00) == 0 else 8) + (0 if (x & 0xF0F0) == 0 else 4)) + ((0 if (x & 0xCCCC) == 0 else 2) + (0 if (x & 0xAAAA) == 0 else 1)) @staticmethod def keccakFRound(A, rc): ''' Perform one round of computation @param A:list The current state @param rc:int Round constant ''' if SHA3.w == 64: # θ step (step 1 and 2 of 3) SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4] SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14] db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1) SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24] dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1) SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9] da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1) SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19] dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1) de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1) # ρ and π steps, with last part of θ SHA3.B[0] = SHA3.rotate64(A[0] ^ da, 0) SHA3.B[1] = SHA3.rotate64(A[15] ^ dd, 28) SHA3.B[2] = SHA3.rotate64(A[5] ^ db, 1) SHA3.B[3] = SHA3.rotate64(A[20] ^ de, 27) SHA3.B[4] = SHA3.rotate64(A[10] ^ dc, 62) SHA3.B[5] = SHA3.rotate64(A[6] ^ db, 44) SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20) SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6) SHA3.B[8] = SHA3.rotate64(A[1] ^ da, 36) SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55) SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43) SHA3.B[11] = SHA3.rotate64(A[2] ^ da, 3) SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25) SHA3.B[13] = SHA3.rotate64(A[7] ^ db, 10) SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39) SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21) SHA3.B[16] = SHA3.rotate64(A[8] ^ db, 45) SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8) SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15) SHA3.B[19] = SHA3.rotate64(A[3] ^ da, 41) SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14) SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61) SHA3.B[22] = SHA3.rotate64(A[4] ^ da, 18) SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56) SHA3.B[24] = SHA3.rotate64(A[9] ^ db, 2) else: # θ step (step 1 and 2 of 3) SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4] SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14] db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1) SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24] dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1) SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9] da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1) SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19] dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1) de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1) # ρ and π steps, with last part of θ SHA3.B[0] = SHA3.rotate(A[0] ^ da, 0) SHA3.B[1] = SHA3.rotate(A[15] ^ dd, 28) SHA3.B[2] = SHA3.rotate(A[5] ^ db, 1) SHA3.B[3] = SHA3.rotate(A[20] ^ de, 27) SHA3.B[4] = SHA3.rotate(A[10] ^ dc, 62) SHA3.B[5] = SHA3.rotate(A[6] ^ db, 44) SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20) SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6) SHA3.B[8] = SHA3.rotate(A[1] ^ da, 36) SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55) SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43) SHA3.B[11] = SHA3.rotate(A[2] ^ da, 3) SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25) SHA3.B[13] = SHA3.rotate(A[7] ^ db, 10) SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39) SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21) SHA3.B[16] = SHA3.rotate(A[8] ^ db, 45) SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8) SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15) SHA3.B[19] = SHA3.rotate(A[3] ^ da, 41) SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14) SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61) SHA3.B[22] = SHA3.rotate(A[4] ^ da, 18) SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56) SHA3.B[24] = SHA3.rotate(A[9] ^ db, 2) # ξ step A[0] = SHA3.B[0] ^ ((~(SHA3.B[5])) & SHA3.B[10]) A[1] = SHA3.B[1] ^ ((~(SHA3.B[6])) & SHA3.B[11]) A[2] = SHA3.B[2] ^ ((~(SHA3.B[7])) & SHA3.B[12]) A[3] = SHA3.B[3] ^ ((~(SHA3.B[8])) & SHA3.B[13]) A[4] = SHA3.B[4] ^ ((~(SHA3.B[9])) & SHA3.B[14]) A[5] = SHA3.B[5] ^ ((~(SHA3.B[10])) & SHA3.B[15]) A[6] = SHA3.B[6] ^ ((~(SHA3.B[11])) & SHA3.B[16]) A[7] = SHA3.B[7] ^ ((~(SHA3.B[12])) & SHA3.B[17]) A[8] = SHA3.B[8] ^ ((~(SHA3.B[13])) & SHA3.B[18]) A[9] = SHA3.B[9] ^ ((~(SHA3.B[14])) & SHA3.B[19]) A[10] = SHA3.B[10] ^ ((~(SHA3.B[15])) & SHA3.B[20]) A[11] = SHA3.B[11] ^ ((~(SHA3.B[16])) & SHA3.B[21]) A[12] = SHA3.B[12] ^ ((~(SHA3.B[17])) & SHA3.B[22]) A[13] = SHA3.B[13] ^ ((~(SHA3.B[18])) & SHA3.B[23]) A[14] = SHA3.B[14] ^ ((~(SHA3.B[19])) & SHA3.B[24]) A[15] = SHA3.B[15] ^ ((~(SHA3.B[20])) & SHA3.B[0]) A[16] = SHA3.B[16] ^ ((~(SHA3.B[21])) & SHA3.B[1]) A[17] = SHA3.B[17] ^ ((~(SHA3.B[22])) & SHA3.B[2]) A[18] = SHA3.B[18] ^ ((~(SHA3.B[23])) & SHA3.B[3]) A[19] = SHA3.B[19] ^ ((~(SHA3.B[24])) & SHA3.B[4]) A[20] = SHA3.B[20] ^ ((~(SHA3.B[0])) & SHA3.B[5]) A[21] = SHA3.B[21] ^ ((~(SHA3.B[1])) & SHA3.B[6]) A[22] = SHA3.B[22] ^ ((~(SHA3.B[2])) & SHA3.B[7]) A[23] = SHA3.B[23] ^ ((~(SHA3.B[3])) & SHA3.B[8]) A[24] = SHA3.B[24] ^ ((~(SHA3.B[4])) & SHA3.B[9]) # ι step A[0] ^= rc @staticmethod def keccakF(A): ''' Perform Keccak-f function @param A:list The current state ''' if (SHA3.nr == 24): SHA3.keccakFRound(A, 0x0000000000000001) SHA3.keccakFRound(A, 0x0000000000008082) SHA3.keccakFRound(A, 0x800000000000808A) SHA3.keccakFRound(A, 0x8000000080008000) SHA3.keccakFRound(A, 0x000000000000808B) SHA3.keccakFRound(A, 0x0000000080000001) SHA3.keccakFRound(A, 0x8000000080008081) SHA3.keccakFRound(A, 0x8000000000008009) SHA3.keccakFRound(A, 0x000000000000008A) SHA3.keccakFRound(A, 0x0000000000000088) SHA3.keccakFRound(A, 0x0000000080008009) SHA3.keccakFRound(A, 0x000000008000000A) SHA3.keccakFRound(A, 0x000000008000808B) SHA3.keccakFRound(A, 0x800000000000008B) SHA3.keccakFRound(A, 0x8000000000008089) SHA3.keccakFRound(A, 0x8000000000008003) SHA3.keccakFRound(A, 0x8000000000008002) SHA3.keccakFRound(A, 0x8000000000000080) SHA3.keccakFRound(A, 0x000000000000800A) SHA3.keccakFRound(A, 0x800000008000000A) SHA3.keccakFRound(A, 0x8000000080008081) SHA3.keccakFRound(A, 0x8000000000008080) SHA3.keccakFRound(A, 0x0000000080000001) SHA3.keccakFRound(A, 0x8000000080008008) else: for i in range(SHA3.nr): SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod) @staticmethod def toLane(message, rr, ww, off): ''' Convert a chunk of char:s to a word @param message:bytes The message @param rr:int Bitrate in bytes @param ww:int Word size in bytes @param off:int The offset in the message @return :int Lane ''' rc = 0 i = off + ww - 1 n = min(len(message), rr) while i >= off: rc = (rc << 8) | (message[i] if (i < n) else 0) i -= 1 return rc @staticmethod def toLane64(message, rr, off): ''' Convert a chunk of char:s to a 64-bit word @param message:bytes The message @param rr:int Bitrate in bytes @param off:int The offset in the message @return :int Lane ''' rc = 0 n = min(len(message), rr) return ((message[off + 7] << 56) if (off + 7 < n) else 0) | ((message[off + 6] << 48) if (off + 6 < n) else 0) | ((message[off + 5] << 40) if (off + 5 < n) else 0) | ((message[off + 4] << 32) if (off + 4 < n) else 0) | ((message[off + 3] << 24) if (off + 3 < n) else 0) | ((message[off + 2] << 16) if (off + 2 < n) else 0) | ((message[off + 1] << 8) if (off + 1 < n) else 0) | ((message[off]) if (off < n) else 0) @staticmethod def pad10star1(msg, r): ''' pad 10*1 @param msg:bytes The message to pad @param r:int The bitrate @return :str The message padded ''' nnn = len(msg) nrf = nnn >> 3 nbrf = nnn & 7 ll = nnn % r bbbb = 1 if nbrf == 0 else ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)) message = None if ((r - 8 <= ll) and (ll <= r - 2)): message = [bbbb ^ 128] else: nnn = (nrf + 1) << 3 nnn = ((nnn - (nnn % r) + (r - 8)) >> 3) + 1 message = [0] * (nnn - nrf) message[0] = bbbb nnn -= nrf #for i in range(1, nnn): # message[i] = 0 message[nnn - 1] = 0x80 return msg[:nrf] + bytes(message) @staticmethod def initalise(r, c, n): ''' Initalise Keccak sponge @param r:int The bitrate @param c:int The capacity @param n:int The output size ''' SHA3.r = r SHA3.c = c SHA3.n = n SHA3.b = r + c SHA3.w = SHA3.b // 25 SHA3.l = SHA3.lb(SHA3.w) SHA3.nr = 12 + (SHA3.l << 1) SHA3.wmod = (1 << SHA3.w) - 1 SHA3.S = [0] * 25 SHA3.M = bytes([]) @staticmethod def update(msg): ''' Absorb the more of the message message to the Keccak sponge @param msg:bytes The partial message ''' rr = SHA3.r >> 3 ww = SHA3.w >> 3 SHA3.M += msg nnn = len(SHA3.M) nnn -= nnn % ((SHA3.r * SHA3.b) >> 3) message = SHA3.M[:nnn] SHA3.M = SHA3.M[nnn:] # Absorbing phase if ww == 8: for i in range(0, nnn, rr): SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0) SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 8) SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 16) SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 24) SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 32) SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 40) SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48) SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 56) SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 64) SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 72) SHA3.S[10] ^= SHA3.toLane64(message, rr, 80) SHA3.S[11] ^= SHA3.toLane64(message, rr, 88) SHA3.S[12] ^= SHA3.toLane64(message, rr, 96) SHA3.S[13] ^= SHA3.toLane64(message, rr, 104) SHA3.S[14] ^= SHA3.toLane64(message, rr, 112) SHA3.S[15] ^= SHA3.toLane64(message, rr, 120) SHA3.S[16] ^= SHA3.toLane64(message, rr, 128) SHA3.S[17] ^= SHA3.toLane64(message, rr, 136) SHA3.S[18] ^= SHA3.toLane64(message, rr, 144) SHA3.S[19] ^= SHA3.toLane64(message, rr, 152) SHA3.S[20] ^= SHA3.toLane64(message, rr, 160) SHA3.S[21] ^= SHA3.toLane64(message, rr, 168) SHA3.S[22] ^= SHA3.toLane64(message, rr, 176) SHA3.S[23] ^= SHA3.toLane64(message, rr, 184) SHA3.S[24] ^= SHA3.toLane64(message, rr, 192) SHA3.keccakF(SHA3.S) message = message[rr:] else: for i in range(0, nnn, rr): for j in range(25): SHA3.S[j] ^= SHA3.toLane(message, rr, ww, j * ww) message = message[rr:] SHA3.keccakF(SHA3.S) @staticmethod def digest(msg = None): ''' Absorb the last part of the message and squeeze the Keccak sponge @param msg:bytes The rest of the message ''' if msg is None: msg = bytes([]) message = SHA3.pad10star1(SHA3.M + msg, SHA3.r) SHA3.M = None nnn = len(message) rc = [0] * ((SHA3.n + 7) >> 3) ptr = 0 rr = SHA3.r >> 3 nn = SHA3.n >> 3 ww = SHA3.w >> 3 # Absorbing phase if ww == 8: for i in range(0, nnn, rr): SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0) SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 8) SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 16) SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 24) SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 32) SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 40) SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48) SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 56) SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 64) SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 72) SHA3.S[10] ^= SHA3.toLane64(message, rr, 80) SHA3.S[11] ^= SHA3.toLane64(message, rr, 88) SHA3.S[12] ^= SHA3.toLane64(message, rr, 96) SHA3.S[13] ^= SHA3.toLane64(message, rr, 104) SHA3.S[14] ^= SHA3.toLane64(message, rr, 112) SHA3.S[15] ^= SHA3.toLane64(message, rr, 120) SHA3.S[16] ^= SHA3.toLane64(message, rr, 128) SHA3.S[17] ^= SHA3.toLane64(message, rr, 136) SHA3.S[18] ^= SHA3.toLane64(message, rr, 144) SHA3.S[19] ^= SHA3.toLane64(message, rr, 152) SHA3.S[20] ^= SHA3.toLane64(message, rr, 160) SHA3.S[21] ^= SHA3.toLane64(message, rr, 168) SHA3.S[22] ^= SHA3.toLane64(message, rr, 176) SHA3.S[23] ^= SHA3.toLane64(message, rr, 184) SHA3.S[24] ^= SHA3.toLane64(message, rr, 192) SHA3.keccakF(SHA3.S) message = message[rr:] else: for i in range(0, nnn, rr): for j in range(25): SHA3.S[j] ^= SHA3.toLane(message, rr, ww, j * ww) message = message[rr:] SHA3.keccakF(SHA3.S) # Squeezing phase olen = SHA3.n j = 0 ni = min(25, rr) while (olen > 0): i = 0 while (i < ni) and (j < nn): v = SHA3.S[i] for _ in range(ww): if (j < nn): rc[ptr] = v & 255 ptr += 1 v >>= 8 j += 1 i += 1 olen -= SHA3.r if olen > 0: SHA3.keccakF(S) return bytes(rc) if __name__ == '__main__': cmd = sys.argv[0] args = sys.argv[1:] if '/' in cmd: cmd = cmd[cmd.rfind('/') + 1:] if cmd.endswith('.py'): cmd = cmd[:-3] o = 512 # --outputsize if cmd == 'sha3-224sum': o = 224 elif cmd == 'sha3-256sum': o = 256 elif cmd == 'sha3-384sum': o = 384 elif cmd == 'sha3-512sum': o = 512 s = 1600 # --statesize r = s - (o << 1) # --bitrate c = s - r # --capacity w = s // 25 # --wordsize i = 1 # --iterations binary = False (_r, _c, _w, _o, _s, _i) = (r, c, w, o, s, i) files = [] dashed = False linger = None for arg in args + [None]: if linger is not None: if linger[0] in ('-h', '--help'): sys.stderr.buffer.write((''' SHA-3/Keccak checksum calculator USAGE: sha3sum [option...] < file sha3sum [option...] file... OPTIONS: -r BITRATE --bitrate The bitrate to use for SHA-3. (default: %d) -c CAPACITY --capacity The capacity to use for SHA-3. (default: %d) -w WORDSIZE --wordsize The word size to use for SHA-3. (default: %d) -o OUTPUTSIZE --outputsize The output size to use for SHA-3. (default: %d) -s STATESIZE --statesize The state size to use for SHA-3. (default: %d) -i ITERATIONS --iterations The number of hash iterations to run. (default: %d) -b --binary Print the checksum in binary, rather than hexadecimal. COPYRIGHT: Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ''' % (_r, _c, _w, _o, _s, _i)).encode('utf-8')) sys.stderr.buffer.flush() exit(2) else: if linger[1] is None: linger[1] = arg arg = None if linger[0] in ('-r', '--bitrate'): r = int(linger[1]) o = (s - r) >> 1 elif linger[0] in ('-c', '--capacity'): c = int(linger[1]) r = s - c elif linger[0] in ('-w', '--wordsize'): w = int(linger[1]) s = w * 25 elif linger[0] in ('-o', '--outputsize'): o = int(linger[1]) r = s - (o << 1) elif linger[0] in ('-s', '--statesize'): s = int(linger[1]) r = s - (o << 1) elif linger[0] in ('-i', '--iterations'): i = int(linger[1]) else: sys.stderr.buffer.write((sys.argv[0] + ': unrecognised option: ' + linger[0] + '\n').encode('utf-8')) sys.stdout.buffer.flush() exit(1) linger = None if arg is None: continue if arg is None: continue if dashed: files.append(None if arg == '-' else arg) elif arg == '--': dashed = True elif arg == '-': files.append(None) elif arg.startswith('--'): if '=' in arg: linger = (arg[:arg.find('=')], arg[arg.find('=') + 1:]) else: if arg == '--binary': binary = True else: linger = [arg, None] elif arg.startswith('-'): arg = arg[1:] if arg[0] == 'b': binary = True arg = arg[1:] elif len(arg) == 1: linger = ['-' + arg, None] else: linger = ['-' + arg[0], arg[1:]] else: files.append(arg) if len(files) == 0: files.append(None) if i < 1: sys.stdout.buffer.write((sys.argv[0] + ': sorry, I will only do at least one iteration!\n').encode('utf-8')) sys.stdout.buffer.flush() exit(3) stdin = None for filename in files: if (filename is None) and (stdin is not None): print(stdin) continue rc = '' fn = '/dev/stdin' if filename is None else filename with open(fn, 'rb') as file: SHA3.initalise(r, c, o) blksize = os.stat(os.path.realpath(fn)).st_size SHA3.update(file.read(blksize)) bs = SHA3.digest(file.read()) for _ in range(1, i): SHA3.initalise(r, c, o) bs = SHA3.digest(bs) if binary: if filename is None: stdin = bs sys.stdout.buffer.write(bs) sys.stdout.buffer.flush() else: for b in bs: rc += "0123456789ABCDEF"[b >> 4] rc += "0123456789ABCDEF"[b & 15] rc += ' ' + ('-' if filename is None else filename) + '\n' if filename is None: stdin = rc sys.stdout.buffer.write(rc.encode('UTF-8')) sys.stdout.buffer.flush()