#!/usr/bin/env python2 # -*- coding: utf-8 -*- ''' sha3sum – SHA-3 (Keccak) checksum calculator Copyright © 2013, 2014 Mattias Andrée (maandree@member.fsf.org) This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see . ''' class SHA3: ''' SHA-3/Keccak hash algorithm implementation @author Mattias Andrée (maandree@member.fsf.org) ''' KECCAK_SUFFIX = '' ''' :str Suffix the message when calculating the Keccak hash sum ''' SHA3_SUFFIX = '01' ''' :str Suffix the message when calculating the SHA-3 hash sum ''' RawSHAKE_SUFFIX = '11' ''' :str Suffix the message when calculating the RawSHAKE hash sum ''' SHAKE_SUFFIX = '1111' ''' :str Suffix the message when calculating the SHAKE hash sum ''' def __init__(self): ''' Constructor ''' self.RC = [0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000, 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A, 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008] ''' :list Round contants ''' self.B = [0] * 25 ''' :list Keccak-f round temporary ''' self.C = [0] * 5 ''' :list Keccak-f round temporary ''' (self.r, self.c, self.n, self.b, self.w, self.wmod, self.l, self.nr) = (0, 0, 0, 0, 0, 0, 0, 0) ''' r:int The bitrate c:int The capacity n:int The output size b:int The state size w:int The word size wmod:int The word mask l:int ℓ, the binary logarithm of the word size nr:int 12 + 2ℓ, the number of rounds ''' self.S = None ''' :list The current state ''' self.M = None ''' :bytes Left over water to fill the sponge with at next update ''' def rotate(self, x, n): ''' Rotate a word @param x:int The value to rotate @param n:int Rotation steps @return :int The value rotated ''' m = n % self.w return ((x >> (self.w - m)) + (x << m)) & self.wmod def rotate64(self, x, n): ''' Rotate a 64-bit word @param x:int The value to rotate @param n:int Rotation steps @return :int The value rotated ''' return ((x >> (64 - n)) + (x << n)) & 0xFFFFFFFFFFFFFFFF def lb(self, x): ''' Binary logarithm @param x:int The value of which to calculate the binary logarithm @return :int The binary logarithm ''' rc = 0 if (x & 0xFF00) != 0: rc += 8 ; x >>= 8 if (x & 0x00F0) != 0: rc += 4 ; x >>= 4 if (x & 0x000C) != 0: rc += 2 ; x >>= 2 if (x & 0x0002) != 0: rc += 1 return rc def keccakFRound(self, A, rc): ''' Perform one round of computation @param A:list The current state @param rc:int Round constant ''' if self.w == 64: # θ step (step 1 and 2 of 3) self.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4] self.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14] db = self.C[0] ^ self.rotate64(self.C[2], 1) self.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24] dd = self.C[2] ^ self.rotate64(self.C[4], 1) self.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9] da = self.C[4] ^ self.rotate64(self.C[1], 1) self.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19] dc = self.C[1] ^ self.rotate64(self.C[3], 1) de = self.C[3] ^ self.rotate64(self.C[0], 1) # ρ and π steps, with last part of θ self.B[0] = self.rotate64(A[0] ^ da, 0) self.B[1] = self.rotate64(A[15] ^ dd, 28) self.B[2] = self.rotate64(A[5] ^ db, 1) self.B[3] = self.rotate64(A[20] ^ de, 27) self.B[4] = self.rotate64(A[10] ^ dc, 62) self.B[5] = self.rotate64(A[6] ^ db, 44) self.B[6] = self.rotate64(A[21] ^ de, 20) self.B[7] = self.rotate64(A[11] ^ dc, 6) self.B[8] = self.rotate64(A[1] ^ da, 36) self.B[9] = self.rotate64(A[16] ^ dd, 55) self.B[10] = self.rotate64(A[12] ^ dc, 43) self.B[11] = self.rotate64(A[2] ^ da, 3) self.B[12] = self.rotate64(A[17] ^ dd, 25) self.B[13] = self.rotate64(A[7] ^ db, 10) self.B[14] = self.rotate64(A[22] ^ de, 39) self.B[15] = self.rotate64(A[18] ^ dd, 21) self.B[16] = self.rotate64(A[8] ^ db, 45) self.B[17] = self.rotate64(A[23] ^ de, 8) self.B[18] = self.rotate64(A[13] ^ dc, 15) self.B[19] = self.rotate64(A[3] ^ da, 41) self.B[20] = self.rotate64(A[24] ^ de, 14) self.B[21] = self.rotate64(A[14] ^ dc, 61) self.B[22] = self.rotate64(A[4] ^ da, 18) self.B[23] = self.rotate64(A[19] ^ dd, 56) self.B[24] = self.rotate64(A[9] ^ db, 2) else: # θ step (step 1 and 2 of 3) self.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4] self.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14] db = self.C[0] ^ self.rotate(self.C[2], 1) self.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24] dd = self.C[2] ^ self.rotate(self.C[4], 1) self.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9] da = self.C[4] ^ self.rotate(self.C[1], 1) self.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19] dc = self.C[1] ^ self.rotate(self.C[3], 1) de = self.C[3] ^ self.rotate(self.C[0], 1) # ρ and π steps, with last part of θ self.B[0] = self.rotate(A[0] ^ da, 0) self.B[1] = self.rotate(A[15] ^ dd, 28) self.B[2] = self.rotate(A[5] ^ db, 1) self.B[3] = self.rotate(A[20] ^ de, 27) self.B[4] = self.rotate(A[10] ^ dc, 62) self.B[5] = self.rotate(A[6] ^ db, 44) self.B[6] = self.rotate(A[21] ^ de, 20) self.B[7] = self.rotate(A[11] ^ dc, 6) self.B[8] = self.rotate(A[1] ^ da, 36) self.B[9] = self.rotate(A[16] ^ dd, 55) self.B[10] = self.rotate(A[12] ^ dc, 43) self.B[11] = self.rotate(A[2] ^ da, 3) self.B[12] = self.rotate(A[17] ^ dd, 25) self.B[13] = self.rotate(A[7] ^ db, 10) self.B[14] = self.rotate(A[22] ^ de, 39) self.B[15] = self.rotate(A[18] ^ dd, 21) self.B[16] = self.rotate(A[8] ^ db, 45) self.B[17] = self.rotate(A[23] ^ de, 8) self.B[18] = self.rotate(A[13] ^ dc, 15) self.B[19] = self.rotate(A[3] ^ da, 41) self.B[20] = self.rotate(A[24] ^ de, 14) self.B[21] = self.rotate(A[14] ^ dc, 61) self.B[22] = self.rotate(A[4] ^ da, 18) self.B[23] = self.rotate(A[19] ^ dd, 56) self.B[24] = self.rotate(A[9] ^ db, 2) # ξ step A[0] = self.B[0] ^ ((~(self.B[5])) & self.B[10]) A[1] = self.B[1] ^ ((~(self.B[6])) & self.B[11]) A[2] = self.B[2] ^ ((~(self.B[7])) & self.B[12]) A[3] = self.B[3] ^ ((~(self.B[8])) & self.B[13]) A[4] = self.B[4] ^ ((~(self.B[9])) & self.B[14]) A[5] = self.B[5] ^ ((~(self.B[10])) & self.B[15]) A[6] = self.B[6] ^ ((~(self.B[11])) & self.B[16]) A[7] = self.B[7] ^ ((~(self.B[12])) & self.B[17]) A[8] = self.B[8] ^ ((~(self.B[13])) & self.B[18]) A[9] = self.B[9] ^ ((~(self.B[14])) & self.B[19]) A[10] = self.B[10] ^ ((~(self.B[15])) & self.B[20]) A[11] = self.B[11] ^ ((~(self.B[16])) & self.B[21]) A[12] = self.B[12] ^ ((~(self.B[17])) & self.B[22]) A[13] = self.B[13] ^ ((~(self.B[18])) & self.B[23]) A[14] = self.B[14] ^ ((~(self.B[19])) & self.B[24]) A[15] = self.B[15] ^ ((~(self.B[20])) & self.B[0]) A[16] = self.B[16] ^ ((~(self.B[21])) & self.B[1]) A[17] = self.B[17] ^ ((~(self.B[22])) & self.B[2]) A[18] = self.B[18] ^ ((~(self.B[23])) & self.B[3]) A[19] = self.B[19] ^ ((~(self.B[24])) & self.B[4]) A[20] = self.B[20] ^ ((~(self.B[0])) & self.B[5]) A[21] = self.B[21] ^ ((~(self.B[1])) & self.B[6]) A[22] = self.B[22] ^ ((~(self.B[2])) & self.B[7]) A[23] = self.B[23] ^ ((~(self.B[3])) & self.B[8]) A[24] = self.B[24] ^ ((~(self.B[4])) & self.B[9]) # ι step A[0] ^= rc def keccakF(self, A): ''' Perform Keccak-f function @param A:list The current state ''' if (self.nr == 24): self.keccakFRound(A, 0x0000000000000001) self.keccakFRound(A, 0x0000000000008082) self.keccakFRound(A, 0x800000000000808A) self.keccakFRound(A, 0x8000000080008000) self.keccakFRound(A, 0x000000000000808B) self.keccakFRound(A, 0x0000000080000001) self.keccakFRound(A, 0x8000000080008081) self.keccakFRound(A, 0x8000000000008009) self.keccakFRound(A, 0x000000000000008A) self.keccakFRound(A, 0x0000000000000088) self.keccakFRound(A, 0x0000000080008009) self.keccakFRound(A, 0x000000008000000A) self.keccakFRound(A, 0x000000008000808B) self.keccakFRound(A, 0x800000000000008B) self.keccakFRound(A, 0x8000000000008089) self.keccakFRound(A, 0x8000000000008003) self.keccakFRound(A, 0x8000000000008002) self.keccakFRound(A, 0x8000000000000080) self.keccakFRound(A, 0x000000000000800A) self.keccakFRound(A, 0x800000008000000A) self.keccakFRound(A, 0x8000000080008081) self.keccakFRound(A, 0x8000000000008080) self.keccakFRound(A, 0x0000000080000001) self.keccakFRound(A, 0x8000000080008008) else: for i in range(self.nr): self.keccakFRound(A, self.RC[i] & self.wmod) def toLane(self, message, n, ww, off): ''' Convert a chunk of byte:s to a word @param message:bytes The message @param n:int `min(len(message), rr)` rr:int Bitrate in bytes @param ww:int Word size in bytes @param off:int The offset in the message @return :int Lane ''' rc = 0 i = off + ww - 1 while i >= off: rc = (rc << 8) | (message[i] if (i < n) else 0) i -= 1 return rc def toLane64(self, message, n, off): ''' Convert a chunk of byte:s to a 64-bit word @param message:bytes The message @param n:int `min(len(message), rr)` rr:int Bitrate in bytes @param off:int The offset in the message @return :int Lane ''' return ((message[off + 7] << 56) if (off + 7 < n) else 0) | \ ((message[off + 6] << 48) if (off + 6 < n) else 0) | \ ((message[off + 5] << 40) if (off + 5 < n) else 0) | \ ((message[off + 4] << 32) if (off + 4 < n) else 0) | \ ((message[off + 3] << 24) if (off + 3 < n) else 0) | \ ((message[off + 2] << 16) if (off + 2 < n) else 0) | \ ((message[off + 1] << 8) if (off + 1 < n) else 0) | \ ((message[off]) if (off < n) else 0) def pad10star1(self, msg, r, bits): ''' pad 10*1 @param msg:bytes The message to pad @param r:int The bitrate @param bits:int The number of bits in the end of the message that does not make a whole byte @return :bytes The message padded ''' nnn = ((len(msg) - (bits + 7) // 8) << 3) + bits nrf = nnn >> 3 nbrf = nnn & 7 ll = nnn % r bbbb = 1 if nbrf == 0 else (msg[nrf] | (1 << nbrf)) message = None if ((r - 8 <= ll) and (ll <= r - 2)): message = [bbbb ^ 128] else: nnn = (nrf + 1) << 3 nnn = ((nnn - (nnn % r) + (r - 8)) >> 3) + 1 message = [0] * (nnn - nrf) message[0] = bbbb nnn -= nrf message[nnn - 1] = 0x80 return msg[:nrf] + message def initialise(self, r, c, n): ''' Initialise Keccak sponge @param r:int The bitrate @param c:int The capacity @param n:int The output size ''' self.r = r self.c = c self.n = n self.b = r + c self.w = self.b // 25 self.l = self.lb(self.w) self.nr = 12 + (self.l << 1) self.wmod = (1 << self.w) - 1 self.S = [0] * 25 self.M = [] def update(self, msg, msglen = None): ''' Absorb the more of the message message to the Keccak sponge @param msg:bytes The partial message @param msglen:int The length of the partial message in whole bytes ''' if msglen is not None: msg = msg[:msglen] rr = self.r >> 3 ww = self.w >> 3 self.M += msg nnn = len(self.M) nnn -= nnn % ((self.r * self.b) >> 3) message = self.M[:nnn] self.M = self.M[nnn:] # Absorbing phase if ww == 8: for i in range(0, nnn, rr): n = min(len(message), rr) self.S[ 0] ^= self.toLane64(message, n, 0) self.S[ 5] ^= self.toLane64(message, n, 8) self.S[10] ^= self.toLane64(message, n, 16) self.S[15] ^= self.toLane64(message, n, 24) self.S[20] ^= self.toLane64(message, n, 32) self.S[ 1] ^= self.toLane64(message, n, 40) self.S[ 6] ^= self.toLane64(message, n, 48) self.S[11] ^= self.toLane64(message, n, 56) self.S[16] ^= self.toLane64(message, n, 64) self.S[21] ^= self.toLane64(message, n, 72) self.S[ 2] ^= self.toLane64(message, n, 80) self.S[ 7] ^= self.toLane64(message, n, 88) self.S[12] ^= self.toLane64(message, n, 96) self.S[17] ^= self.toLane64(message, n, 104) self.S[22] ^= self.toLane64(message, n, 112) self.S[ 3] ^= self.toLane64(message, n, 120) self.S[ 8] ^= self.toLane64(message, n, 128) self.S[13] ^= self.toLane64(message, n, 136) self.S[18] ^= self.toLane64(message, n, 144) self.S[23] ^= self.toLane64(message, n, 152) self.S[ 4] ^= self.toLane64(message, n, 160) self.S[ 9] ^= self.toLane64(message, n, 168) self.S[14] ^= self.toLane64(message, n, 176) self.S[19] ^= self.toLane64(message, n, 184) self.S[24] ^= self.toLane64(message, n, 192) self.keccakF(self.S) message = message[rr:] else: for i in range(0, nnn, rr): n = min(len(message), rr) self.S[ 0] ^= self.toLane(message, n, ww, 0) self.S[ 5] ^= self.toLane(message, n, ww, ww) self.S[10] ^= self.toLane(message, n, ww, 2 * ww) self.S[15] ^= self.toLane(message, n, ww, 3 * ww) self.S[20] ^= self.toLane(message, n, ww, 4 * ww) self.S[ 1] ^= self.toLane(message, n, ww, 5 * ww) self.S[ 6] ^= self.toLane(message, n, ww, 6 * ww) self.S[11] ^= self.toLane(message, n, ww, 7 * ww) self.S[16] ^= self.toLane(message, n, ww, 8 * ww) self.S[21] ^= self.toLane(message, n, ww, 9 * ww) self.S[ 2] ^= self.toLane(message, n, ww, 10 * ww) self.S[ 7] ^= self.toLane(message, n, ww, 11 * ww) self.S[12] ^= self.toLane(message, n, ww, 12 * ww) self.S[17] ^= self.toLane(message, n, ww, 13 * ww) self.S[22] ^= self.toLane(message, n, ww, 14 * ww) self.S[ 3] ^= self.toLane(message, n, ww, 15 * ww) self.S[ 8] ^= self.toLane(message, n, ww, 16 * ww) self.S[13] ^= self.toLane(message, n, ww, 17 * ww) self.S[18] ^= self.toLane(message, n, ww, 18 * ww) self.S[23] ^= self.toLane(message, n, ww, 19 * ww) self.S[ 4] ^= self.toLane(message, n, ww, 20 * ww) self.S[ 9] ^= self.toLane(message, n, ww, 21 * ww) self.S[14] ^= self.toLane(message, n, ww, 22 * ww) self.S[19] ^= self.toLane(message, n, ww, 23 * ww) self.S[24] ^= self.toLane(message, n, ww, 24 * ww) self.keccakF(self.S) message = message[rr:] def digest(self, msg = None, msglen = None, bits = 0, suffix = SHA3_SUFFIX, withReturn = None): ''' Absorb the last part of the message and squeeze the Keccak sponge @param msg:bytes? The rest of the message @param msglen:int The length of the partial message in whole bytes @param bits:int The number of bits at the end of the message not covered by `msglen` @param suffix:str The suffix concatenate to the message @param withReturn:bool Whether to return the hash instead of just do a quick squeeze phrase and return `None` @return :bytes? The hash sum, or `None` if `withReturn` is `False` ''' if msg is None: msg, last_byte = [], 0 bits = 0 else: msg, last_byte = msg[:msglen + bits // 8], (0 if bits % 8 == 0 else msg[msglen]) bits %= 8 last_byte &= (1 << bits) - 1 msg_end = [] for bit in suffix: last_byte |= int(bit) << bits bits += 1 if bits == 8: msg_end.append(last_byte) last_byte = 0 bits = 0 if not bits == 0: msg_end.append(last_byte) msg += msg_end message = self.pad10star1(self.M + msg, self.r, bits) self.M = None nnn = len(message) rr = self.r >> 3 nn = (self.n + 7) >> 3 ww = self.w >> 3 # Absorbing phase if ww == 8: for i in range(0, nnn, rr): n = min(len(message), rr) self.S[ 0] ^= self.toLane64(message, n, 0) self.S[ 5] ^= self.toLane64(message, n, 8) self.S[10] ^= self.toLane64(message, n, 16) self.S[15] ^= self.toLane64(message, n, 24) self.S[20] ^= self.toLane64(message, n, 32) self.S[ 1] ^= self.toLane64(message, n, 40) self.S[ 6] ^= self.toLane64(message, n, 48) self.S[11] ^= self.toLane64(message, n, 56) self.S[16] ^= self.toLane64(message, n, 64) self.S[21] ^= self.toLane64(message, n, 72) self.S[ 2] ^= self.toLane64(message, n, 80) self.S[ 7] ^= self.toLane64(message, n, 88) self.S[12] ^= self.toLane64(message, n, 96) self.S[17] ^= self.toLane64(message, n, 104) self.S[22] ^= self.toLane64(message, n, 112) self.S[ 3] ^= self.toLane64(message, n, 120) self.S[ 8] ^= self.toLane64(message, n, 128) self.S[13] ^= self.toLane64(message, n, 136) self.S[18] ^= self.toLane64(message, n, 144) self.S[23] ^= self.toLane64(message, n, 152) self.S[ 4] ^= self.toLane64(message, n, 160) self.S[ 9] ^= self.toLane64(message, n, 168) self.S[14] ^= self.toLane64(message, n, 176) self.S[19] ^= self.toLane64(message, n, 184) self.S[24] ^= self.toLane64(message, n, 192) self.keccakF(self.S) message = message[rr:] else: for i in range(0, nnn, rr): n = min(len(message), rr) self.S[ 0] ^= self.toLane(message, n, ww, 0) self.S[ 5] ^= self.toLane(message, n, ww, ww) self.S[10] ^= self.toLane(message, n, ww, 2 * ww) self.S[15] ^= self.toLane(message, n, ww, 3 * ww) self.S[20] ^= self.toLane(message, n, ww, 4 * ww) self.S[ 1] ^= self.toLane(message, n, ww, 5 * ww) self.S[ 6] ^= self.toLane(message, n, ww, 6 * ww) self.S[11] ^= self.toLane(message, n, ww, 7 * ww) self.S[16] ^= self.toLane(message, n, ww, 8 * ww) self.S[21] ^= self.toLane(message, n, ww, 9 * ww) self.S[ 2] ^= self.toLane(message, n, ww, 10 * ww) self.S[ 7] ^= self.toLane(message, n, ww, 11 * ww) self.S[12] ^= self.toLane(message, n, ww, 12 * ww) self.S[17] ^= self.toLane(message, n, ww, 13 * ww) self.S[22] ^= self.toLane(message, n, ww, 14 * ww) self.S[ 3] ^= self.toLane(message, n, ww, 15 * ww) self.S[ 8] ^= self.toLane(message, n, ww, 16 * ww) self.S[13] ^= self.toLane(message, n, ww, 17 * ww) self.S[18] ^= self.toLane(message, n, ww, 18 * ww) self.S[23] ^= self.toLane(message, n, ww, 19 * ww) self.S[ 4] ^= self.toLane(message, n, ww, 20 * ww) self.S[ 9] ^= self.toLane(message, n, ww, 21 * ww) self.S[14] ^= self.toLane(message, n, ww, 22 * ww) self.S[19] ^= self.toLane(message, n, ww, 23 * ww) self.S[24] ^= self.toLane(message, n, ww, 24 * ww) self.keccakF(self.S) message = message[rr:] # Squeezing phase if withReturn: rc = [0] * ((self.n + 7) >> 3) ptr = 0 olen = self.n j = 0 ni = rr // ww while olen > 0: i = 0 while (i < ni) and (j < nn): v = self.S[(i % 5) * 5 + i // 5] for _ in range(ww): if j < nn: rc[ptr] = v & 255 ptr += 1 v >>= 8 j += 1 i += 1 olen -= self.r if olen > 0: self.keccakF(self.S) if (self.n & 7) != 0: rc[len(rc) - 1] &= (1 << (self.n & 7)) - 1 return rc olen = self.n while olen > self.r: olen -= self.r self.keccakF(self.S) return None def simpleSqueeze(self, times = 1): ''' Force some rounds of Keccak-f @param times:int The number of rounds ''' for i in range(times): self.keccakF(self.S) def fastSqueeze(self, times = 1): ''' Squeeze as much as is needed to get a digest a number of times @param times:int The number of digests ''' for i in range(times): self.keccakF(self.S) # Last squeeze did not do a ending squeeze olen = self.n while olen > self.r: olen -= self.r self.keccakF(self.S) def squeeze(self): ''' Squeeze out another digest @return :bytes The hash sum ''' self.keccakF(self.S) # Last squeeze did not do a ending squeeze nn = (self.n + 7) >> 3 ww = self.w >> 3 rc = [0] * nn olen = self.n j = 0 ptr = 0 ni = (self.r >> 3) // ww while olen > 0: i = 0 while (i < ni) and (j < nn): v = self.S[(i % 5) * 5 + i // 5] for _ in range(ww): if j < nn: rc[ptr] = v ptr += 1 v >>= 8 j += 1 i += 1 olen -= self.r if olen > 0: self.keccakF(self.S) if (self.n & 7) != 0: rc[len(rc) - 1] &= (1 << (self.n & 7)) - 1 return rc