/**
* sha3sum – SHA-3 (Keccak) checksum calculator
*
* Copyright © 2013 Mattias Andrée (maandree@member.fsf.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/**
* SHA-3/Keccak hash algorithm implementation
*
* @author Mattias Andrée maandree@member.fsf.org
*/
public class SHA3
{
/**
* Round contants
*/
private static final long[] RC = {
0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L,
0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L,
0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL,
0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L,
0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL,
0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L};
/**
* Keccak-f round temporary
*/
private static long[] B = new long[25];
/**
* Keccak-f round temporary
*/
private static long[] C = new long[5];
/**
* The bitrate
*/
private static int r = 0;
/**
* The capacity
*/
private static int c = 0;
/**
* The output size
*/
private static int n = 0;
/**
* The state size
*/
private static int b = 0;
/**
* The word size
*/
private static int w = 0;
/**
* The word mask
*/
private static long wmod = 0;
/**
* ℓ, the binary logarithm of the word size
*/
private static int l = 0;
/**
* 12 + 2ℓ, the number of rounds
*/
private static int nr = 0;
/**
* The current state
*/
private static long[] S = null;
/**
* Left over water to fill the sponge with at next update
*/
private static byte[] M = null;
/**
* Pointer for {@link #M}
*/
private static int mptr = 0;
/**
* Hidden constructor
*/
private SHA3()
{
// Inhibit instansiation
}
/**
* Rotate a word
*
* @param x The value to rotate
* @param n Rotation steps, may not be 0
* @return The value rotated
*/
private static long rotate(long x, int n)
{
long m;
return ((x >>> (SHA3.w - (m = n % SHA3.w))) + (x << m)) & SHA3.wmod;
}
/**
* Rotate a 64-bit word
*
* @param x The value to rotate
* @param n Rotation steps, may not be 0
* @return The value rotated
*/
private static long rotate64(long x, int n)
{
return (x >>> (64 - n)) + (x << n);
}
/**
* Binary logarithm
*
* @param x The value of which to calculate the binary logarithm
* @return The binary logarithm
*/
private static int lb(int x)
{
int rc = 0;
if ((x & 0xFF00) != 0) { rc += 8; x >>= 8; }
if ((x & 0x00F0) != 0) { rc += 4; x >>= 4; }
if ((x & 0x000C) != 0) { rc += 2; x >>= 2; }
if ((x & 0x0002) != 0) rc += 1;
return rc;
}
/**
* Perform one round of computation
*
* @param A The current state
* @param rc Round constant
*/
private static void keccakFRound(long[] A, long rc)
{
/* θ step (step 1 of 3) */
for (int i = 0, j = 0; i < 5; i++, j += 5)
SHA3.C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4];
long da, db, dc, dd, de;
if (SHA3.w == 64)
{
/* ρ and π steps, with last two part of θ */
SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1));
SHA3.B[1] = SHA3.rotate64(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1)), 28);
SHA3.B[2] = SHA3.rotate64(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1)), 1);
SHA3.B[3] = SHA3.rotate64(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1)), 27);
SHA3.B[4] = SHA3.rotate64(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1)), 62);
SHA3.B[5] = SHA3.rotate64(A[ 6] ^ db, 44);
SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20);
SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6);
SHA3.B[8] = SHA3.rotate64(A[ 1] ^ da, 36);
SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55);
SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43);
SHA3.B[11] = SHA3.rotate64(A[ 2] ^ da, 3);
SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25);
SHA3.B[13] = SHA3.rotate64(A[ 7] ^ db, 10);
SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39);
SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21);
SHA3.B[16] = SHA3.rotate64(A[ 8] ^ db, 45);
SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8);
SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15);
SHA3.B[19] = SHA3.rotate64(A[ 3] ^ da, 41);
SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14);
SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61);
SHA3.B[22] = SHA3.rotate64(A[ 4] ^ da, 18);
SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56);
SHA3.B[24] = SHA3.rotate64(A[ 9] ^ db, 2);
}
else
{
/* ρ and π steps, with last two part of θ */
SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1));
SHA3.B[1] = SHA3.rotate(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1)), 28);
SHA3.B[2] = SHA3.rotate(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1)), 1);
SHA3.B[3] = SHA3.rotate(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1)), 27);
SHA3.B[4] = SHA3.rotate(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1)), 62);
SHA3.B[5] = SHA3.rotate(A[ 6] ^ db, 44);
SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20);
SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6);
SHA3.B[8] = SHA3.rotate(A[ 1] ^ da, 36);
SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55);
SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43);
SHA3.B[11] = SHA3.rotate(A[ 2] ^ da, 3);
SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25);
SHA3.B[13] = SHA3.rotate(A[ 7] ^ db, 10);
SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39);
SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21);
SHA3.B[16] = SHA3.rotate(A[ 8] ^ db, 45);
SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8);
SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15);
SHA3.B[19] = SHA3.rotate(A[ 3] ^ da, 41);
SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14);
SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61);
SHA3.B[22] = SHA3.rotate(A[ 4] ^ da, 18);
SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56);
SHA3.B[24] = SHA3.rotate(A[ 9] ^ db, 2);
}
/* ξ step */
for (int i = 0; i < 15; i++)
A[i ] = SHA3.B[i ] ^ ((~(SHA3.B[i + 5])) & SHA3.B[i + 10]);
for (int i = 0; i < 5; i++)
{
A[i + 15] = SHA3.B[i + 15] ^ ((~(SHA3.B[i + 20])) & SHA3.B[i ]);
A[i + 20] = SHA3.B[i + 20] ^ ((~(SHA3.B[i ])) & SHA3.B[i + 5]);
}
/* ι step */
A[0] ^= rc;
}
/**
* Perform Keccak-f function
*
* @param A The current state
*/
private static void keccakF(long[] A)
{
if (SHA3.nr == 24)
for (int i = 0; i < 24; i++)
SHA3.keccakFRound(A, SHA3.RC[i]);
else
for (int i = 0; i < SHA3.nr; i++)
SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod);
}
/**
* Convert a chunk of byte:s to a word
*
* @param message The message
* @param rr Bitrate in bytes
* @param ww Word size in bytes
* @param off The offset in the message
* @return Lane
*/
private static long toLane(byte[] message, int rr, int ww, int off)
{
long rc = 0;
int n = Math.min(message.length, rr);
for (int i = off + ww - 1; i >= off; i--)
rc = (rc << 8) | ((i < n) ? (long)(message[i] & 255) : 0L);
return rc;
}
/**
* Convert a chunk of byte:s to a 64-bit word
*
* @param message The message
* @param rr Bitrate in bytes
* @param off The offset in the message
* @return Lane
*/
private static long toLane64(byte[] message, int rr, int off)
{
int n = Math.min(message.length, rr);
return ((off + 7 < n) ? ((long)(message[off + 7] & 255) << 56) : 0L) |
((off + 6 < n) ? ((long)(message[off + 6] & 255) << 48) : 0L) |
((off + 5 < n) ? ((long)(message[off + 5] & 255) << 40) : 0L) |
((off + 4 < n) ? ((long)(message[off + 4] & 255) << 32) : 0L) |
((off + 3 < n) ? ((long)(message[off + 3] & 255) << 24) : 0L) |
((off + 2 < n) ? ((long)(message[off + 2] & 255) << 16) : 0L) |
((off + 1 < n) ? ((long)(message[off + 1] & 255) << 8) : 0L) |
((off < n) ? ((long)(message[off] & 255)) : 0L);
}
/**
* pad 10*1
*
* @param msg The message to pad
* @parm len The length of the message
* @param r The bitrate
* @return The message padded
*/
private static byte[] pad10star1(byte[] msg, int len, int r)
{
int nrf = (len <<= 3) >> 3;
int nbrf = len & 7;
int ll = len % r;
byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)));
byte[] message;
if ((r - 8 <= ll) && (ll <= r - 2))
{
message = new byte[len = nrf + 1];
message[nrf] = (byte)(b ^ 128);
}
else
{
len = (nrf + 1) << 3;
len = ((len - (len % r) + (r - 8)) >> 3) + 1;
message = new byte[len];
message[nrf] = b;
message[len - 1] = -128;
}
System.arraycopy(msg, 0, message, 0, nrf);
return message;
}
/**
* Initialise Keccak sponge
*
* @param r The bitrate
* @param c The capacity
* @param n The output size
*/
public static void initialise(int r, int c, int n)
{
SHA3.r = r;
SHA3.c = c;
SHA3.n = n;
SHA3.b = r + c;
SHA3.w = SHA3.b / 25;
SHA3.l = SHA3.lb(SHA3.w);
SHA3.nr = 12 + (SHA3.l << 1);
SHA3.wmod = w == 64 ? -1L : (1L << SHA3.w) - 1L;
SHA3.S = new long[25];
SHA3.M = new byte[(SHA3.r * SHA3.b) >> 2];
SHA3.mptr = 0;
}
/**
* Absorb the more of the message message to the Keccak sponge
*
* @param msg The partial message
*/
public static void update(byte[] msg)
{
update(msg, msg.length);
}
/**
* Absorb the more of the message message to the Keccak sponge
*
* @param msg The partial message
* @param msglen The length of the partial message
*/
public static void update(byte[] msg, int msglen)
{
int rr = SHA3.r >> 3;
int ww = SHA3.w >> 3;
if (SHA3.mptr + msglen > SHA3.M.length)
System.arraycopy(SHA3.M, 0, SHA3.M = new byte[(SHA3.M.length + msglen) << 1], 0, SHA3.mptr);
System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen);
int len = SHA3.mptr += msglen;
len -= len % ((SHA3.r * SHA3.b) >> 3);
byte[] message;
System.arraycopy(SHA3.M, 0, message = new byte[len], 0, len);
System.arraycopy(SHA3.M, len, SHA3.M, 0, SHA3.mptr -= len);
/* Absorbing phase */
if (ww == 8)
for (int i = 0; i < len; i += rr)
{
SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0);
SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8);
SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16);
SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24);
SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32);
SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40);
SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48);
SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56);
SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64);
SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72);
SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80);
SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88);
SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96);
SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104);
SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112);
SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120);
SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128);
SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136);
SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144);
SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152);
SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160);
SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168);
SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176);
SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184);
SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192);
SHA3.keccakF(SHA3.S);
}
else
for (int i = 0; i < len; i += rr)
{
SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 );
SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w);
SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w);
SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w);
SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w);
SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w);
SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w);
SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w);
SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w);
SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w);
SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w);
SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w);
SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w);
SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w);
SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w);
SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w);
SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w);
SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w);
SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w);
SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w);
SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w);
SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w);
SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w);
SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w);
SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w);
SHA3.keccakF(SHA3.S);
}
}
/**
* Squeeze the Keccak sponge
*
* @return The hash sum
*/
public static byte[] digest()
{
return digest(null, 0, true);
}
/**
* Squeeze the Keccak sponge
*
* @paran withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null}
* @return The hash sum, or {@code null} if withReturn is {@code false}
*/
public static byte[] digest(boolean withReturn)
{
return digest(null, 0, withReturn);
}
/**
* Absorb the last part of the message and squeeze the Keccak sponge
*
* @param msg The rest of the message
* @return The hash sum
*/
public static byte[] digest(byte[] msg)
{
return digest(msg, msg == null ? 0 : msg.length, true);
}
/**
* Absorb the last part of the message and squeeze the Keccak sponge
*
* @param msg The rest of the message
* @paran withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null}
* @return The hash sum, or {@code null} if withReturn is {@code false}
*/
public static byte[] digest(byte[] msg, boolean withReturn)
{
return digest(msg, msg == null ? 0 : msg.length, withReturn);
}
/**
* Absorb the last part of the message and squeeze the Keccak sponge
*
* @param msg The rest of the message
* @param msglen The length of the partial message
* @return The hash sum
*/
public static byte[] digest(byte[] msg, int msglen)
{
return digest(msg, msg == null ? 0 : msg.length, true);
}
/**
* Absorb the last part of the message and squeeze the Keccak sponge
*
* @param msg The rest of the message
* @param msglen The length of the partial message
* @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null}
* @return The hash sum, or {@code null} if withReturn is {@code false}
*/
public static byte[] digest(byte[] msg, int msglen, boolean withReturn)
{
byte[] message;
if ((msg == null) || (msglen == 0))
message = SHA3.pad10star1(SHA3.M, SHA3.mptr, SHA3.r);
else
{
if (SHA3.mptr + msglen > SHA3.M.length)
System.arraycopy(SHA3.M, 0, SHA3.M = new byte[SHA3.M.length + msglen], 0, SHA3.mptr);
System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen);
message = SHA3.pad10star1(SHA3.M, SHA3.mptr + msglen, SHA3.r);
}
SHA3.M = null;
int len = message.length;
int rr = SHA3.r >> 3;
int nn = (SHA3.n + 7) >> 3;
int ww = SHA3.w >> 3;
/* Absorbing phase */
if (ww == 8)
for (int i = 0; i < len; i += rr)
{
SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0);
SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8);
SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16);
SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24);
SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32);
SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40);
SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48);
SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56);
SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64);
SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72);
SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80);
SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88);
SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96);
SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104);
SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112);
SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120);
SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128);
SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136);
SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144);
SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152);
SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160);
SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168);
SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176);
SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184);
SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192);
SHA3.keccakF(SHA3.S);
}
else
for (int i = 0; i < len; i += rr)
{
SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 );
SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w);
SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w);
SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w);
SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w);
SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w);
SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w);
SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w);
SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w);
SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w);
SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w);
SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w);
SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w);
SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w);
SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w);
SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w);
SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w);
SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w);
SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w);
SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w);
SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w);
SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w);
SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w);
SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w);
SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w);
SHA3.keccakF(SHA3.S);
}
/* Squeezing phase */
if (withReturn)
{
byte[] rc = new byte[(SHA3.n + 7) >> 3];
int ptr = 0;
int olen = SHA3.n;
int j = 0;
int ni = Math.min(25, rr);
while (olen > 0)
{
int i = 0;
while ((i < ni) && (j < nn))
{
long v = SHA3.S[(i % 5) * 5 + i / 5];
for (int _ = 0; _ < ww; _++)
{
if (j < nn)
{
rc[ptr] = (byte)v;
ptr += 1;
}
v >>= 8;
j += 1;
}
i += 1;
}
olen -= SHA3.r;
if (olen > 0)
SHA3.keccakF(SHA3.S);
}
if ((SHA3.n & 7) != 0)
rc[rc.length - 1] &= (1 << (SHA3.n & 7)) - 1;
return rc;
}
int olen = SHA3.n;
while ((olen -= SHA3.r) > 0)
SHA3.keccakF(SHA3.S);
return null;
}
/**
* Force a round of Keccak-f
*/
public static void simpleSqueeze()
{
SHA3.keccakF(SHA3.S);
}
/**
* Force some rounds of Keccak-f
*
* @param times The number of rounds
*/
public static void simpleSqueeze(int times)
{
for (int i = 0; i < times; i++)
SHA3.keccakF(SHA3.S);
}
/**
* Squeeze as much as is needed to get a digest
*/
public static void fastSqueeze()
{
SHA3.keccakF(SHA3.S); /* Last squeeze did not do a ending squeeze */
int olen = SHA3.n;
while ((olen -= SHA3.r) > 0)
SHA3.keccakF(SHA3.S);
}
/**
* Squeeze as much as is needed to get a digest a number of times
*
* @param times The number of digests
*/
public static void fastSqueeze(int times)
{
for (int i = 0; i < times; i++)
{
SHA3.keccakF(SHA3.S); /* Last squeeze did not do a ending squeeze */
int olen = SHA3.n;
while ((olen -= SHA3.r) > 0)
SHA3.keccakF(SHA3.S);
}
}
/**
* Squeeze out another digest
*
* @return The hash sum
*/
public static byte[] squeeze()
{
SHA3.keccakF(SHA3.S); /* Last squeeze did not do a ending squeeze */
int nn, ww = SHA3.w >> 3;
byte[] rc = new byte[nn = (SHA3.n + 7) >> 3];
int olen = SHA3.n;
int j = 0, ptr = 0;
int ni = Math.min(25, SHA3.r >> 3);
while (olen > 0)
{
int i = 0;
while ((i < ni) && (j < nn))
{
long v = SHA3.S[(i % 5) * 5 + i / 5];
for (int _ = 0; _ < ww; _++)
{
if (j < nn)
{
rc[ptr] = (byte)v;
ptr += 1;
}
v >>= 8;
j += 1;
}
i += 1;
}
olen -= SHA3.r;
if (olen > 0)
SHA3.keccakF(SHA3.S);
}
if ((SHA3.n & 7) != 0)
rc[rc.length - 1] &= (1 << (SHA3.n & 7)) - 1;
return rc;
}
}