/** * sha3sum – SHA-3 (Keccak) checksum calculator * * Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ /** * SHA-3/Keccak hash algorithm implementation * * @author Mattias Andrée maandree@member.fsf.org */ public class SHA3 { /** * Round contants */ private static final long[] RC = { 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L, 0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L, 0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL, 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L, 0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL, 0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L}; /** * Keccak-f round temporary */ private static long[] B = new long[25]; /** * Keccak-f round temporary */ private static long[] C = new long[5]; /** * The bitrate */ private static int r = 0; /** * The capacity */ private static int c = 0; /** * The output size */ private static int n = 0; /** * The state size */ private static int b = 0; /** * The word size */ private static int w = 0; /** * The word mask */ private static long wmod = 0; /** * ℓ, the binary logarithm of the word size */ private static int l = 0; /** * 12 + 2ℓ, the number of rounds */ private static int nr = 0; /** * Message chunk that is being processes */ private static byte[] message = null; /** * The current state */ private static long[] S = null; /** * Left over water to fill the sponge with at next update */ private static byte[] M = null; /** * Pointer for {@link #M} */ private static int mptr = 0; /** * Hidden constructor */ private SHA3() { // Inhibit instansiation } /** * Rotate a word * * @param x The value to rotate * @param n Rotation steps, may not be 0 * @return The value rotated */ private static long rotate(long x, int n) { long m; return ((x >>> (SHA3.w - (m = n % SHA3.w))) + (x << m)) & SHA3.wmod; } /** * Rotate a 64-bit word * * @param x The value to rotate * @param n Rotation steps, may not be 0 * @return The value rotated */ private static long rotate64(long x, int n) { return (x >>> (64 - n)) + (x << n); } /** * Binary logarithm * * @param x The value of which to calculate the binary logarithm * @return The binary logarithm */ private static int lb(int x) { int rc = 0; if ((x & 0xFF00) != 0) { rc += 8; x >>= 8; } if ((x & 0x00F0) != 0) { rc += 4; x >>= 4; } if ((x & 0x000C) != 0) { rc += 2; x >>= 2; } if ((x & 0x0002) != 0) rc += 1; return rc; } /** * Perform one round of computation * * @param A The current state * @param rc Round constant */ private static void keccakFRound(long[] A, long rc) { /* θ step (step 1 of 3) */ for (int i = 0, j = 0; i < 5; i++, j += 5) SHA3.C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4]; long da, db, dc, dd, de; if (SHA3.w == 64) { /* ρ and π steps, with last two part of θ */ SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1)); SHA3.B[1] = SHA3.rotate64(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1)), 28); SHA3.B[2] = SHA3.rotate64(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1)), 1); SHA3.B[3] = SHA3.rotate64(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1)), 27); SHA3.B[4] = SHA3.rotate64(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1)), 62); SHA3.B[5] = SHA3.rotate64(A[ 6] ^ db, 44); SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20); SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6); SHA3.B[8] = SHA3.rotate64(A[ 1] ^ da, 36); SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55); SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43); SHA3.B[11] = SHA3.rotate64(A[ 2] ^ da, 3); SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25); SHA3.B[13] = SHA3.rotate64(A[ 7] ^ db, 10); SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39); SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21); SHA3.B[16] = SHA3.rotate64(A[ 8] ^ db, 45); SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8); SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15); SHA3.B[19] = SHA3.rotate64(A[ 3] ^ da, 41); SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14); SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61); SHA3.B[22] = SHA3.rotate64(A[ 4] ^ da, 18); SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56); SHA3.B[24] = SHA3.rotate64(A[ 9] ^ db, 2); } else { /* ρ and π steps, with last two part of θ */ SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1)); SHA3.B[1] = SHA3.rotate(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1)), 28); SHA3.B[2] = SHA3.rotate(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1)), 1); SHA3.B[3] = SHA3.rotate(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1)), 27); SHA3.B[4] = SHA3.rotate(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1)), 62); SHA3.B[5] = SHA3.rotate(A[ 6] ^ db, 44); SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20); SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6); SHA3.B[8] = SHA3.rotate(A[ 1] ^ da, 36); SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55); SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43); SHA3.B[11] = SHA3.rotate(A[ 2] ^ da, 3); SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25); SHA3.B[13] = SHA3.rotate(A[ 7] ^ db, 10); SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39); SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21); SHA3.B[16] = SHA3.rotate(A[ 8] ^ db, 45); SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8); SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15); SHA3.B[19] = SHA3.rotate(A[ 3] ^ da, 41); SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14); SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61); SHA3.B[22] = SHA3.rotate(A[ 4] ^ da, 18); SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56); SHA3.B[24] = SHA3.rotate(A[ 9] ^ db, 2); } /* ξ step */ for (int i = 0; i < 15; i++) A[i ] = SHA3.B[i ] ^ ((~(SHA3.B[i + 5])) & SHA3.B[i + 10]); for (int i = 0; i < 5; i++) { A[i + 15] = SHA3.B[i + 15] ^ ((~(SHA3.B[i + 20])) & SHA3.B[i ]); A[i + 20] = SHA3.B[i + 20] ^ ((~(SHA3.B[i ])) & SHA3.B[i + 5]); } /* ι step */ A[0] ^= rc; } /** * Perform Keccak-f function * * @param A The current state */ private static void keccakF(long[] A) { if (SHA3.nr == 24) for (int i = 0; i < 24; i++) SHA3.keccakFRound(A, SHA3.RC[i]); else for (int i = 0; i < SHA3.nr; i++) SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod); } /** * Convert a chunk of byte:s to a word * * @param n {@code Math.min(SHA3.message.length, rr) + msgoff} * msgoff The number of times to loop has run times the bitrate * rr Bitrate in bytes * @param ww Word size in bytes * @param off The offset in the message * @return Lane */ private static long toLane(int n, int ww, int off) { long rc = 0; for (int i = off + ww - 1; i >= off; i--) rc = (rc << 8) | ((i < n) ? (long)(SHA3.message[i] & 255) : 0L); return rc; } /** * Convert a chunk of byte:s to a 64-bit word * * @param n {@code Math.min(SHA3.message.length, rr) + msgoff} * msgoff The number of times to loop has run times the bitrate * rr Bitrate in bytes * @param off The offset in the message * @return Lane */ private static long toLane64(int n, int off) { return ((off + 7 < n) ? ((long)(SHA3.message[off + 7] & 255) << 56) : 0L) | ((off + 6 < n) ? ((long)(SHA3.message[off + 6] & 255) << 48) : 0L) | ((off + 5 < n) ? ((long)(SHA3.message[off + 5] & 255) << 40) : 0L) | ((off + 4 < n) ? ((long)(SHA3.message[off + 4] & 255) << 32) : 0L) | ((off + 3 < n) ? ((long)(SHA3.message[off + 3] & 255) << 24) : 0L) | ((off + 2 < n) ? ((long)(SHA3.message[off + 2] & 255) << 16) : 0L) | ((off + 1 < n) ? ((long)(SHA3.message[off + 1] & 255) << 8) : 0L) | ((off < n) ? ((long)(SHA3.message[off] & 255)) : 0L); } /** * pad 10*1 * * @param msg The message to pad * @param len The length of the message * @param r The bitrate * @return The actual length of {@link #message} */ private static int pad10star1(byte[] msg, int len, int r) { int nrf = (len <<= 3) >> 3; int nbrf = len & 7; int ll = len % r; byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf))); if ((r - 8 <= ll) && (ll <= r - 2)) { SHA3.message = new byte[len = nrf + 1]; SHA3.message[nrf] = (byte)(b ^ 128); } else { len = (nrf + 1) << 3; len = ((len - (len % r) + (r - 8)) >> 3) + 1; SHA3.message = new byte[len]; SHA3.message[nrf] = b; SHA3.message[len - 1] = -128; } System.arraycopy(msg, 0, SHA3.message, 0, nrf); return len; } /** * Initialise Keccak sponge * * @param r The bitrate * @param c The capacity * @param n The output size */ public static void initialise(int r, int c, int n) { SHA3.r = r; SHA3.c = c; SHA3.n = n; SHA3.b = r + c; SHA3.w = SHA3.b / 25; SHA3.l = SHA3.lb(SHA3.w); SHA3.nr = 12 + (SHA3.l << 1); SHA3.wmod = w == 64 ? -1L : (1L << SHA3.w) - 1L; SHA3.S = new long[25]; if ((SHA3.M == null) || ((SHA3.r * SHA3.b) >> 2 != SHA3.M.length)) SHA3.M = new byte[(SHA3.r * SHA3.b) >> 2]; SHA3.mptr = 0; if (SHA3.message == null) SHA3.message = new byte[8 << 10]; } /** * Free up static resources */ public static void dispose() { SHA3.S = null; SHA3.M = null; SHA3.message = null; } /** * Absorb the more of the message message to the Keccak sponge * * @param msg The partial message */ public static void update(byte[] msg) { update(msg, msg.length); } /** * Absorb the more of the message message to the Keccak sponge * * @param msg The partial message * @param msglen The length of the partial message */ public static void update(byte[] msg, int msglen) { int rr = SHA3.r >> 3; int ww = SHA3.w >> 3; if (SHA3.mptr + msglen > SHA3.M.length) System.arraycopy(SHA3.M, 0, SHA3.M = new byte[(SHA3.M.length + msglen) << 1], 0, SHA3.mptr); System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen); int len = SHA3.mptr += msglen; len -= len % ((SHA3.r * SHA3.b) >> 3); System.arraycopy(SHA3.M, 0, (SHA3.message.length < len) ? (SHA3.message = new byte[len]) : SHA3.message, 0, len); System.arraycopy(SHA3.M, len, SHA3.M, 0, SHA3.mptr -= len); int n = Math.min(len, rr); /* Absorbing phase */ if (ww == 8) for (int i = 0; i < len; i += rr) { SHA3.S[ 0] ^= SHA3.toLane64(n, i + 0); SHA3.S[ 5] ^= SHA3.toLane64(n, i + 8); SHA3.S[10] ^= SHA3.toLane64(n, i + 16); SHA3.S[15] ^= SHA3.toLane64(n, i + 24); SHA3.S[20] ^= SHA3.toLane64(n, i + 32); SHA3.S[ 1] ^= SHA3.toLane64(n, i + 40); SHA3.S[ 6] ^= SHA3.toLane64(n, i + 48); SHA3.S[11] ^= SHA3.toLane64(n, i + 56); SHA3.S[16] ^= SHA3.toLane64(n, i + 64); SHA3.S[21] ^= SHA3.toLane64(n, i + 72); SHA3.S[ 2] ^= SHA3.toLane64(n, i + 80); SHA3.S[ 7] ^= SHA3.toLane64(n, i + 88); SHA3.S[12] ^= SHA3.toLane64(n, i + 96); SHA3.S[17] ^= SHA3.toLane64(n, i + 104); SHA3.S[22] ^= SHA3.toLane64(n, i + 112); SHA3.S[ 3] ^= SHA3.toLane64(n, i + 120); SHA3.S[ 8] ^= SHA3.toLane64(n, i + 128); SHA3.S[13] ^= SHA3.toLane64(n, i + 136); SHA3.S[18] ^= SHA3.toLane64(n, i + 144); SHA3.S[23] ^= SHA3.toLane64(n, i + 152); SHA3.S[ 4] ^= SHA3.toLane64(n, i + 160); SHA3.S[ 9] ^= SHA3.toLane64(n, i + 168); SHA3.S[14] ^= SHA3.toLane64(n, i + 176); SHA3.S[19] ^= SHA3.toLane64(n, i + 184); SHA3.S[24] ^= SHA3.toLane64(n, i + 192); SHA3.keccakF(SHA3.S); n += rr; } else for (int i = 0; i < len; i += rr) { SHA3.S[ 0] ^= SHA3.toLane(n, ww, i + 0 ); SHA3.S[ 5] ^= SHA3.toLane(n, ww, i + w); SHA3.S[10] ^= SHA3.toLane(n, ww, i + 2 * w); SHA3.S[15] ^= SHA3.toLane(n, ww, i + 3 * w); SHA3.S[20] ^= SHA3.toLane(n, ww, i + 4 * w); SHA3.S[ 1] ^= SHA3.toLane(n, ww, i + 5 * w); SHA3.S[ 6] ^= SHA3.toLane(n, ww, i + 6 * w); SHA3.S[11] ^= SHA3.toLane(n, ww, i + 7 * w); SHA3.S[16] ^= SHA3.toLane(n, ww, i + 8 * w); SHA3.S[21] ^= SHA3.toLane(n, ww, i + 9 * w); SHA3.S[ 2] ^= SHA3.toLane(n, ww, i + 10 * w); SHA3.S[ 7] ^= SHA3.toLane(n, ww, i + 11 * w); SHA3.S[12] ^= SHA3.toLane(n, ww, i + 12 * w); SHA3.S[17] ^= SHA3.toLane(n, ww, i + 13 * w); SHA3.S[22] ^= SHA3.toLane(n, ww, i + 14 * w); SHA3.S[ 3] ^= SHA3.toLane(n, ww, i + 15 * w); SHA3.S[ 8] ^= SHA3.toLane(n, ww, i + 16 * w); SHA3.S[13] ^= SHA3.toLane(n, ww, i + 17 * w); SHA3.S[18] ^= SHA3.toLane(n, ww, i + 18 * w); SHA3.S[23] ^= SHA3.toLane(n, ww, i + 19 * w); SHA3.S[ 4] ^= SHA3.toLane(n, ww, i + 20 * w); SHA3.S[ 9] ^= SHA3.toLane(n, ww, i + 21 * w); SHA3.S[14] ^= SHA3.toLane(n, ww, i + 22 * w); SHA3.S[19] ^= SHA3.toLane(n, ww, i + 23 * w); SHA3.S[24] ^= SHA3.toLane(n, ww, i + 24 * w); SHA3.keccakF(SHA3.S); n += rr; } } /** * Squeeze the Keccak sponge * * @return The hash sum */ public static byte[] digest() { return digest(null, 0, true); } /** * Squeeze the Keccak sponge * * @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null} * @return The hash sum, or {@code null} if withReturn is {@code false} */ public static byte[] digest(boolean withReturn) { return digest(null, 0, withReturn); } /** * Absorb the last part of the message and squeeze the Keccak sponge * * @param msg The rest of the message * @return The hash sum */ public static byte[] digest(byte[] msg) { return digest(msg, msg == null ? 0 : msg.length, true); } /** * Absorb the last part of the message and squeeze the Keccak sponge * * @param msg The rest of the message * @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null} * @return The hash sum, or {@code null} if withReturn is {@code false} */ public static byte[] digest(byte[] msg, boolean withReturn) { return digest(msg, msg == null ? 0 : msg.length, withReturn); } /** * Absorb the last part of the message and squeeze the Keccak sponge * * @param msg The rest of the message * @param msglen The length of the partial message * @return The hash sum */ public static byte[] digest(byte[] msg, int msglen) { return digest(msg, msg == null ? 0 : msg.length, true); } /** * Absorb the last part of the message and squeeze the Keccak sponge * * @param msg The rest of the message * @param msglen The length of the partial message * @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null} * @return The hash sum, or {@code null} if withReturn is {@code false} */ public static byte[] digest(byte[] msg, int msglen, boolean withReturn) { int len; if ((msg == null) || (msglen == 0)) len = SHA3.pad10star1(SHA3.M, SHA3.mptr, SHA3.r); else { if (SHA3.mptr + msglen > SHA3.M.length) System.arraycopy(SHA3.M, 0, SHA3.M = new byte[SHA3.M.length + msglen], 0, SHA3.mptr); System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen); len = SHA3.pad10star1(SHA3.M, SHA3.mptr + msglen, SHA3.r); } int rr = SHA3.r >> 3; int nn = (SHA3.n + 7) >> 3; int ww = SHA3.w >> 3; int n = Math.min(len, rr); /* Absorbing phase */ if (ww == 8) for (int i = 0; i < len; i += rr) { SHA3.S[ 0] ^= SHA3.toLane64(n, i + 0); SHA3.S[ 5] ^= SHA3.toLane64(n, i + 8); SHA3.S[10] ^= SHA3.toLane64(n, i + 16); SHA3.S[15] ^= SHA3.toLane64(n, i + 24); SHA3.S[20] ^= SHA3.toLane64(n, i + 32); SHA3.S[ 1] ^= SHA3.toLane64(n, i + 40); SHA3.S[ 6] ^= SHA3.toLane64(n, i + 48); SHA3.S[11] ^= SHA3.toLane64(n, i + 56); SHA3.S[16] ^= SHA3.toLane64(n, i + 64); SHA3.S[21] ^= SHA3.toLane64(n, i + 72); SHA3.S[ 2] ^= SHA3.toLane64(n, i + 80); SHA3.S[ 7] ^= SHA3.toLane64(n, i + 88); SHA3.S[12] ^= SHA3.toLane64(n, i + 96); SHA3.S[17] ^= SHA3.toLane64(n, i + 104); SHA3.S[22] ^= SHA3.toLane64(n, i + 112); SHA3.S[ 3] ^= SHA3.toLane64(n, i + 120); SHA3.S[ 8] ^= SHA3.toLane64(n, i + 128); SHA3.S[13] ^= SHA3.toLane64(n, i + 136); SHA3.S[18] ^= SHA3.toLane64(n, i + 144); SHA3.S[23] ^= SHA3.toLane64(n, i + 152); SHA3.S[ 4] ^= SHA3.toLane64(n, i + 160); SHA3.S[ 9] ^= SHA3.toLane64(n, i + 168); SHA3.S[14] ^= SHA3.toLane64(n, i + 176); SHA3.S[19] ^= SHA3.toLane64(n, i + 184); SHA3.S[24] ^= SHA3.toLane64(n, i + 192); SHA3.keccakF(SHA3.S); n += rr; } else for (int i = 0; i < len; i += rr) { SHA3.S[ 0] ^= SHA3.toLane(n, ww, i + 0 ); SHA3.S[ 5] ^= SHA3.toLane(n, ww, i + w); SHA3.S[10] ^= SHA3.toLane(n, ww, i + 2 * w); SHA3.S[15] ^= SHA3.toLane(n, ww, i + 3 * w); SHA3.S[20] ^= SHA3.toLane(n, ww, i + 4 * w); SHA3.S[ 1] ^= SHA3.toLane(n, ww, i + 5 * w); SHA3.S[ 6] ^= SHA3.toLane(n, ww, i + 6 * w); SHA3.S[11] ^= SHA3.toLane(n, ww, i + 7 * w); SHA3.S[16] ^= SHA3.toLane(n, ww, i + 8 * w); SHA3.S[21] ^= SHA3.toLane(n, ww, i + 9 * w); SHA3.S[ 2] ^= SHA3.toLane(n, ww, i + 10 * w); SHA3.S[ 7] ^= SHA3.toLane(n, ww, i + 11 * w); SHA3.S[12] ^= SHA3.toLane(n, ww, i + 12 * w); SHA3.S[17] ^= SHA3.toLane(n, ww, i + 13 * w); SHA3.S[22] ^= SHA3.toLane(n, ww, i + 14 * w); SHA3.S[ 3] ^= SHA3.toLane(n, ww, i + 15 * w); SHA3.S[ 8] ^= SHA3.toLane(n, ww, i + 16 * w); SHA3.S[13] ^= SHA3.toLane(n, ww, i + 17 * w); SHA3.S[18] ^= SHA3.toLane(n, ww, i + 18 * w); SHA3.S[23] ^= SHA3.toLane(n, ww, i + 19 * w); SHA3.S[ 4] ^= SHA3.toLane(n, ww, i + 20 * w); SHA3.S[ 9] ^= SHA3.toLane(n, ww, i + 21 * w); SHA3.S[14] ^= SHA3.toLane(n, ww, i + 22 * w); SHA3.S[19] ^= SHA3.toLane(n, ww, i + 23 * w); SHA3.S[24] ^= SHA3.toLane(n, ww, i + 24 * w); SHA3.keccakF(SHA3.S); n += rr; } /* Squeezing phase */ if (withReturn) { byte[] rc = new byte[(SHA3.n + 7) >> 3]; int ptr = 0; int olen = SHA3.n; int j = 0; int ni = Math.min(25, rr); while (olen > 0) { int i = 0; while ((i < ni) && (j < nn)) { long v = SHA3.S[(i % 5) * 5 + i / 5]; for (int _ = 0; _ < ww; _++) { if (j < nn) { rc[ptr] = (byte)v; ptr += 1; } v >>= 8; j += 1; } i += 1; } olen -= SHA3.r; if (olen > 0) SHA3.keccakF(SHA3.S); } if ((SHA3.n & 7) != 0) rc[rc.length - 1] &= (1 << (SHA3.n & 7)) - 1; return rc; } int olen = SHA3.n; while ((olen -= SHA3.r) > 0) SHA3.keccakF(SHA3.S); return null; } /** * Force a round of Keccak-f */ public static void simpleSqueeze() { SHA3.keccakF(SHA3.S); } /** * Force some rounds of Keccak-f * * @param times The number of rounds */ public static void simpleSqueeze(int times) { for (int i = 0; i < times; i++) SHA3.keccakF(SHA3.S); } /** * Squeeze as much as is needed to get a digest */ public static void fastSqueeze() { SHA3.keccakF(SHA3.S); /* Last squeeze did not do a ending squeeze */ int olen = SHA3.n; while ((olen -= SHA3.r) > 0) SHA3.keccakF(SHA3.S); } /** * Squeeze as much as is needed to get a digest a number of times * * @param times The number of digests */ public static void fastSqueeze(int times) { for (int i = 0; i < times; i++) { SHA3.keccakF(SHA3.S); /* Last squeeze did not do a ending squeeze */ int olen = SHA3.n; while ((olen -= SHA3.r) > 0) SHA3.keccakF(SHA3.S); } } /** * Squeeze out another digest * * @return The hash sum */ public static byte[] squeeze() { SHA3.keccakF(SHA3.S); /* Last squeeze did not do a ending squeeze */ int nn, ww = SHA3.w >> 3; byte[] rc = new byte[nn = (SHA3.n + 7) >> 3]; int olen = SHA3.n; int j = 0, ptr = 0; int ni = Math.min(25, SHA3.r >> 3); while (olen > 0) { int i = 0; while ((i < ni) && (j < nn)) { long v = SHA3.S[(i % 5) * 5 + i / 5]; for (int _ = 0; _ < ww; _++) { if (j < nn) { rc[ptr] = (byte)v; ptr += 1; } v >>= 8; j += 1; } i += 1; } olen -= SHA3.r; if (olen > 0) SHA3.keccakF(SHA3.S); } if ((SHA3.n & 7) != 0) rc[rc.length - 1] &= (1 << (SHA3.n & 7)) - 1; return rc; } }