/** * sha3sum – SHA-3 (Keccak) checksum calculator * * Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ /** * SHA-3/Keccak hash algorithm implementation with support for concurrent threads * * @author Mattias Andrée maandree@member.fsf.org */ public class ConcurrentSHA3 { /** * Round contants */ private static final long[] RC = { 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L, 0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L, 0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL, 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L, 0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL, 0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L}; /** *

Constructor

*

* Do not forget to run {@link #Initialise(int, int, int)} *

*/ public ConcurrentSHA3() { /* Do nothing */ } /** * Keccak-f round temporary */ private long[] B = new long[25]; /** * Keccak-f round temporary */ private long[] C = new long[5]; /** * The bitrate */ private int r = 0; /** * The capacity */ private int c = 0; /** * The output size */ private int n = 0; /** * The state size */ private int b = 0; /** * The word size */ private int w = 0; /** * The word mask */ private long wmod = 0; /** * ℓ, the binary logarithm of the word size */ private int l = 0; /** * 12 + 2ℓ, the number of rounds */ private int nr = 0; /** * The current state */ private long[] S = null; /** * Left over water to fill the sponge with at next update */ private byte[] M = null; /** * Pointer for {@link #M} */ private int mptr = 0; /** * Rotate a word * * @param x The value to rotate * @param n Rotation steps, may not be 0 * @return The value rotated */ private long rotate(long x, int n) { long m; return ((x >>> (this.w - (m = n % this.w))) + (x << m)) & this.wmod; } /** * Rotate a 64-bit word * * @param x The value to rotate * @param n Rotation steps, may not be 0 * @return The value rotated */ private static long rotate64(long x, int n) { return (x >>> (64 - n)) + (x << n); } /** * Binary logarithm * * @param x The value of which to calculate the binary logarithm * @return The binary logarithm */ private static int lb(int x) { int rc = 0; if ((x & 0xFF00) != 0) { rc += 8; x >>= 8; } if ((x & 0x00F0) != 0) { rc += 4; x >>= 4; } if ((x & 0x000C) != 0) { rc += 2; x >>= 2; } if ((x & 0x0002) != 0) rc += 1; return rc; } /** * Perform one round of computation * * @param A The current state * @param rc Round constant */ private void keccakFRound(long[] A, long rc) { /* θ step (step 1 of 3) */ for (int i = 0, j = 0; i < 5; i++, j += 5) this.C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4]; long da, db, dc, dd, de; if (this.w == 64) { /* ρ and π steps, with last two part of θ */ this.B[0] = A[ 0] ^ (da = this.C[4] ^ ConcurrentSHA3.rotate64(this.C[1], 1)); this.B[1] = ConcurrentSHA3.rotate64(A[15] ^ (dd = this.C[2] ^ ConcurrentSHA3.rotate64(this.C[4], 1)), 28); this.B[2] = ConcurrentSHA3.rotate64(A[ 5] ^ (db = this.C[0] ^ ConcurrentSHA3.rotate64(this.C[2], 1)), 1); this.B[3] = ConcurrentSHA3.rotate64(A[20] ^ (de = this.C[3] ^ ConcurrentSHA3.rotate64(this.C[0], 1)), 27); this.B[4] = ConcurrentSHA3.rotate64(A[10] ^ (dc = this.C[1] ^ ConcurrentSHA3.rotate64(this.C[3], 1)), 62); this.B[5] = ConcurrentSHA3.rotate64(A[ 6] ^ db, 44); this.B[6] = ConcurrentSHA3.rotate64(A[21] ^ de, 20); this.B[7] = ConcurrentSHA3.rotate64(A[11] ^ dc, 6); this.B[8] = ConcurrentSHA3.rotate64(A[ 1] ^ da, 36); this.B[9] = ConcurrentSHA3.rotate64(A[16] ^ dd, 55); this.B[10] = ConcurrentSHA3.rotate64(A[12] ^ dc, 43); this.B[11] = ConcurrentSHA3.rotate64(A[ 2] ^ da, 3); this.B[12] = ConcurrentSHA3.rotate64(A[17] ^ dd, 25); this.B[13] = ConcurrentSHA3.rotate64(A[ 7] ^ db, 10); this.B[14] = ConcurrentSHA3.rotate64(A[22] ^ de, 39); this.B[15] = ConcurrentSHA3.rotate64(A[18] ^ dd, 21); this.B[16] = ConcurrentSHA3.rotate64(A[ 8] ^ db, 45); this.B[17] = ConcurrentSHA3.rotate64(A[23] ^ de, 8); this.B[18] = ConcurrentSHA3.rotate64(A[13] ^ dc, 15); this.B[19] = ConcurrentSHA3.rotate64(A[ 3] ^ da, 41); this.B[20] = ConcurrentSHA3.rotate64(A[24] ^ de, 14); this.B[21] = ConcurrentSHA3.rotate64(A[14] ^ dc, 61); this.B[22] = ConcurrentSHA3.rotate64(A[ 4] ^ da, 18); this.B[23] = ConcurrentSHA3.rotate64(A[19] ^ dd, 56); this.B[24] = ConcurrentSHA3.rotate64(A[ 9] ^ db, 2); } else { /* ρ and π steps, with last two part of θ */ this.B[0] = A[ 0] ^ (da = this.C[4] ^ this.rotate(this.C[1], 1)); this.B[1] = this.rotate(A[15] ^ (dd = this.C[2] ^ this.rotate(this.C[4], 1)), 28); this.B[2] = this.rotate(A[ 5] ^ (db = this.C[0] ^ this.rotate(this.C[2], 1)), 1); this.B[3] = this.rotate(A[20] ^ (de = this.C[3] ^ this.rotate(this.C[0], 1)), 27); this.B[4] = this.rotate(A[10] ^ (dc = this.C[1] ^ this.rotate(this.C[3], 1)), 62); this.B[5] = this.rotate(A[ 6] ^ db, 44); this.B[6] = this.rotate(A[21] ^ de, 20); this.B[7] = this.rotate(A[11] ^ dc, 6); this.B[8] = this.rotate(A[ 1] ^ da, 36); this.B[9] = this.rotate(A[16] ^ dd, 55); this.B[10] = this.rotate(A[12] ^ dc, 43); this.B[11] = this.rotate(A[ 2] ^ da, 3); this.B[12] = this.rotate(A[17] ^ dd, 25); this.B[13] = this.rotate(A[ 7] ^ db, 10); this.B[14] = this.rotate(A[22] ^ de, 39); this.B[15] = this.rotate(A[18] ^ dd, 21); this.B[16] = this.rotate(A[ 8] ^ db, 45); this.B[17] = this.rotate(A[23] ^ de, 8); this.B[18] = this.rotate(A[13] ^ dc, 15); this.B[19] = this.rotate(A[ 3] ^ da, 41); this.B[20] = this.rotate(A[24] ^ de, 14); this.B[21] = this.rotate(A[14] ^ dc, 61); this.B[22] = this.rotate(A[ 4] ^ da, 18); this.B[23] = this.rotate(A[19] ^ dd, 56); this.B[24] = this.rotate(A[ 9] ^ db, 2); } /* ξ step */ for (int i = 0; i < 15; i++) A[i ] = this.B[i ] ^ ((~(this.B[i + 5])) & this.B[i + 10]); for (int i = 0; i < 5; i++) { A[i + 15] = this.B[i + 15] ^ ((~(this.B[i + 20])) & this.B[i ]); A[i + 20] = this.B[i + 20] ^ ((~(this.B[i ])) & this.B[i + 5]); } /* ι step */ A[0] ^= rc; } /** * Perform Keccak-f function * * @param A The current state */ private void keccakF(long[] A) { if (this.nr == 24) for (int i = 0; i < 24; i++) this.keccakFRound(A, ConcurrentSHA3.RC[i]); else for (int i = 0; i < this.nr; i++) this.keccakFRound(A, ConcurrentSHA3.RC[i] & this.wmod); } /** * Convert a chunk of byte:s to a word * * @param message The message * @param msgoff The number of times to loop has run times the bitrate * @param rr Bitrate in bytes * @param ww Word size in bytes * @param off The offset in the message * @return Lane */ private static long toLane(byte[] message, int msgoff, int rr, int ww, int off) { long rc = 0; int n = Math.min(message.length, rr) + msgoff; for (int i = off + ww - 1; i >= off; i--) rc = (rc << 8) | ((i < n) ? (long)(message[i] & 255) : 0L); return rc; } /** * Convert a chunk of byte:s to a 64-bit word * * @param message The message * @param msgoff The number of times to loop has run times the bitrate * @param rr Bitrate in bytes * @param off The offset in the message * @return Lane */ private static long toLane64(byte[] message, int msgoff, int rr, int off) { int n = Math.min(message.length, rr) + msgoff; return ((off + 7 < n) ? ((long)(message[off + 7] & 255) << 56) : 0L) | ((off + 6 < n) ? ((long)(message[off + 6] & 255) << 48) : 0L) | ((off + 5 < n) ? ((long)(message[off + 5] & 255) << 40) : 0L) | ((off + 4 < n) ? ((long)(message[off + 4] & 255) << 32) : 0L) | ((off + 3 < n) ? ((long)(message[off + 3] & 255) << 24) : 0L) | ((off + 2 < n) ? ((long)(message[off + 2] & 255) << 16) : 0L) | ((off + 1 < n) ? ((long)(message[off + 1] & 255) << 8) : 0L) | ((off < n) ? ((long)(message[off] & 255)) : 0L); } /** * pad 10*1 * * @param msg The message to pad * @parm len The length of the message * @param r The bitrate * @return The message padded */ private static byte[] pad10star1(byte[] msg, int len, int r) { int nrf = (len <<= 3) >> 3; int nbrf = len & 7; int ll = len % r; byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf))); byte[] message; if ((r - 8 <= ll) && (ll <= r - 2)) { message = new byte[len = nrf + 1]; message[nrf] = (byte)(b ^ 128); } else { len = (nrf + 1) << 3; len = ((len - (len % r) + (r - 8)) >> 3) + 1; message = new byte[len]; message[nrf] = b; message[len - 1] = -128; } System.arraycopy(msg, 0, message, 0, nrf); return message; } /** * Initialise Keccak sponge * * @param r The bitrate * @param c The capacity * @param n The output size */ public void initialise(int r, int c, int n) { this.r = r; this.c = c; this.n = n; this.b = r + c; this.w = this.b / 25; this.l = ConcurrentSHA3.lb(this.w); this.nr = 12 + (this.l << 1); this.wmod = w == 64 ? -1L : (1L << this.w) - 1L; this.S = new long[25]; this.M = new byte[(this.r * this.b) >> 2]; this.mptr = 0; } /** * Absorb the more of the message message to the Keccak sponge * * @param msg The partial message */ public void update(byte[] msg) { this.update(msg, msg.length); } /** * Absorb the more of the message message to the Keccak sponge * * @param msg The partial message * @param msglen The length of the partial message */ public void update(byte[] msg, int msglen) { int rr = this.r >> 3; int ww = this.w >> 3; if (this.mptr + msglen > this.M.length) System.arraycopy(this.M, 0, this.M = new byte[(this.M.length + msglen) << 1], 0, this.mptr); System.arraycopy(msg, 0, this.M, this.mptr, msglen); int len = this.mptr += msglen; len -= len % ((this.r * this.b) >> 3); byte[] message; System.arraycopy(this.M, 0, message = new byte[len], 0, len); System.arraycopy(this.M, len, this.M, 0, this.mptr -= len); /* Absorbing phase */ if (ww == 8) for (int i = 0; i < len; i += rr) { this.S[ 0] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 0); this.S[ 5] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 8); this.S[10] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 16); this.S[15] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 24); this.S[20] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 32); this.S[ 1] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 40); this.S[ 6] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 48); this.S[11] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 56); this.S[16] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 64); this.S[21] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 72); this.S[ 2] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 80); this.S[ 7] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 88); this.S[12] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 96); this.S[17] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 104); this.S[22] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 112); this.S[ 3] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 120); this.S[ 8] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 128); this.S[13] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 136); this.S[18] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 144); this.S[23] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 152); this.S[ 4] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 160); this.S[ 9] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 168); this.S[14] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 176); this.S[19] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 184); this.S[24] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 192); this.keccakF(this.S); } else for (int i = 0; i < len; i += rr) { this.S[ 0] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 0 ); this.S[ 5] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + w); this.S[10] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 2 * w); this.S[15] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 3 * w); this.S[20] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 4 * w); this.S[ 1] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 5 * w); this.S[ 6] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 6 * w); this.S[11] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 7 * w); this.S[16] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 8 * w); this.S[21] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 9 * w); this.S[ 2] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 10 * w); this.S[ 7] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 11 * w); this.S[12] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 12 * w); this.S[17] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 13 * w); this.S[22] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 14 * w); this.S[ 3] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 15 * w); this.S[ 8] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 16 * w); this.S[13] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 17 * w); this.S[18] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 18 * w); this.S[23] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 19 * w); this.S[ 4] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 20 * w); this.S[ 9] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 21 * w); this.S[14] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 22 * w); this.S[19] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 23 * w); this.S[24] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 24 * w); this.keccakF(this.S); } } /** * Squeeze the Keccak sponge * * @return The hash sum */ public byte[] digest() { return this.digest(null, 0, true); } /** * Squeeze the Keccak sponge * * @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null} * @return The hash sum, or {@code null} if withReturn is {@code false} */ public byte[] digest(boolean withReturn) { return this.digest(null, 0, withReturn); } /** * Absorb the last part of the message and squeeze the Keccak sponge * * @param msg The rest of the message * @return The hash sum */ public byte[] digest(byte[] msg) { return this.digest(msg, msg == null ? 0 : msg.length, true); } /** * Absorb the last part of the message and squeeze the Keccak sponge * * @param msg The rest of the message * @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null} * @return The hash sum, or {@code null} if withReturn is {@code false} */ public byte[] digest(byte[] msg, boolean withReturn) { return this.digest(msg, msg == null ? 0 : msg.length, withReturn); } /** * Absorb the last part of the message and squeeze the Keccak sponge * * @param msg The rest of the message * @param msglen The length of the partial message * @return The hash sum */ public byte[] digest(byte[] msg, int msglen) { return this.digest(msg, msg == null ? 0 : msg.length, true); } /** * Absorb the last part of the message and squeeze the Keccak sponge * * @param msg The rest of the message * @param msglen The length of the partial message * @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null} * @return The hash sum, or {@code null} if withReturn is {@code false} */ public byte[] digest(byte[] msg, int msglen, boolean withReturn) { byte[] message; if ((msg == null) || (msglen == 0)) message = ConcurrentSHA3.pad10star1(this.M, this.mptr, this.r); else { if (this.mptr + msglen > this.M.length) System.arraycopy(this.M, 0, this.M = new byte[this.M.length + msglen], 0, this.mptr); System.arraycopy(msg, 0, this.M, this.mptr, msglen); message = ConcurrentSHA3.pad10star1(this.M, this.mptr + msglen, this.r); } this.M = null; int len = message.length; int rr = this.r >> 3; int nn = (this.n + 7) >> 3; int ww = this.w >> 3; /* Absorbing phase */ if (ww == 8) for (int i = 0; i < len; i += rr) { this.S[ 0] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 0); this.S[ 5] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 8); this.S[10] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 16); this.S[15] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 24); this.S[20] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 32); this.S[ 1] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 40); this.S[ 6] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 48); this.S[11] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 56); this.S[16] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 64); this.S[21] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 72); this.S[ 2] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 80); this.S[ 7] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 88); this.S[12] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 96); this.S[17] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 104); this.S[22] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 112); this.S[ 3] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 120); this.S[ 8] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 128); this.S[13] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 136); this.S[18] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 144); this.S[23] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 152); this.S[ 4] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 160); this.S[ 9] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 168); this.S[14] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 176); this.S[19] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 184); this.S[24] ^= ConcurrentSHA3.toLane64(message, i, rr, i + 192); this.keccakF(this.S); } else for (int i = 0; i < len; i += rr) { this.S[ 0] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 0 ); this.S[ 5] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + w); this.S[10] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 2 * w); this.S[15] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 3 * w); this.S[20] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 4 * w); this.S[ 1] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 5 * w); this.S[ 6] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 6 * w); this.S[11] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 7 * w); this.S[16] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 8 * w); this.S[21] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 9 * w); this.S[ 2] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 10 * w); this.S[ 7] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 11 * w); this.S[12] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 12 * w); this.S[17] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 13 * w); this.S[22] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 14 * w); this.S[ 3] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 15 * w); this.S[ 8] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 16 * w); this.S[13] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 17 * w); this.S[18] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 18 * w); this.S[23] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 19 * w); this.S[ 4] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 20 * w); this.S[ 9] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 21 * w); this.S[14] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 22 * w); this.S[19] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 23 * w); this.S[24] ^= ConcurrentSHA3.toLane(message, i, rr, ww, i + 24 * w); this.keccakF(this.S); } /* Squeezing phase */ if (withReturn) { byte[] rc = new byte[(this.n + 7) >> 3]; int ptr = 0; int olen = this.n; int j = 0; int ni = Math.min(25, rr); while (olen > 0) { int i = 0; while ((i < ni) && (j < nn)) { long v = this.S[(i % 5) * 5 + i / 5]; for (int _ = 0; _ < ww; _++) { if (j < nn) { rc[ptr] = (byte)v; ptr += 1; } v >>= 8; j += 1; } i += 1; } olen -= this.r; if (olen > 0) this.keccakF(this.S); } if ((this.n & 7) != 0) rc[rc.length - 1] &= (1 << (this.n & 7)) - 1; return rc; } int olen = this.n; while ((olen -= this.r) > 0) this.keccakF(this.S); return null; } /** * Force a round of Keccak-f */ public void simpleSqueeze() { this.keccakF(this.S); } /** * Force some rounds of Keccak-f * * @param times The number of rounds */ public void simpleSqueeze(int times) { for (int i = 0; i < times; i++) this.keccakF(this.S); } /** * Squeeze as much as is needed to get a digest */ public void fastSqueeze() { this.keccakF(this.S); /* Last squeeze did not do a ending squeeze */ int olen = this.n; while ((olen -= this.r) > 0) this.keccakF(this.S); } /** * Squeeze as much as is needed to get a digest a number of times * * @param times The number of digests */ public void fastSqueeze(int times) { for (int i = 0; i < times; i++) { this.keccakF(this.S); /* Last squeeze did not do a ending squeeze */ int olen = this.n; while ((olen -= this.r) > 0) this.keccakF(this.S); } } /** * Squeeze out another digest * * @return The hash sum */ public byte[] squeeze() { this.keccakF(this.S); /* Last squeeze did not do a ending squeeze */ int nn, ww = this.w >> 3; byte[] rc = new byte[nn = (this.n + 7) >> 3]; int olen = this.n; int j = 0, ptr = 0; int ni = Math.min(25, this.r >> 3); while (olen > 0) { int i = 0; while ((i < ni) && (j < nn)) { long v = this.S[(i % 5) * 5 + i / 5]; for (int _ = 0; _ < ww; _++) { if (j < nn) { rc[ptr] = (byte)v; ptr += 1; } v >>= 8; j += 1; } i += 1; } olen -= this.r; if (olen > 0) this.keccakF(this.S); } if ((this.n & 7) != 0) rc[rc.length - 1] &= (1 << (this.n & 7)) - 1; return rc; } }