/**
* sha3sum – SHA-3 (Keccak) checksum calculator
*
* Copyright © 2013, 2014 Mattias Andrée (maandree@member.fsf.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see .
*/
#include
#include "SHA3.h"
#if __x86_64__ || __ppc64__
#define llong long int
#else
#define llong long long int
#endif
#define null 0
#define byte char
#define boolean long
#define true 1
#define false 0
/**
* Round contants
*/
static const llong RC[] = {
0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L,
0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L,
0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL,
0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L,
0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL,
0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L};
/**
* Keccak-f round temporary
*/
static llong B[25];
/**
* Keccak-f round temporary
*/
static llong C[5];
/**
* The bitrate
*/
static long r = 0;
/**
* The capacity
*/
static long c = 0;
/**
* The output size
*/
static long n = 0;
/**
* The state size
*/
static long b = 0;
/**
* The word size
*/
static long w = 0;
/**
* The word mask
*/
static llong wmod = 0;
/**
* ℓ, the binary logarithm of the word size
*/
static long l = 0;
/**
* 12 + 2ℓ, the number of rounds
*/
static long nr = 0;
/**
* The current state
*/
static llong* S = null;
/**
* Left over water to fill the sponge with at next update
*/
static byte* M = null;
/**
* Pointer for {@link #M}
*/
static long mptr = 0;
/**
* Size of {@link #M}
*/
static long mlen = 0;
/**
* Gets the smallest, in value, of the arguments
*
* @param X The first candidate
* @param Y The second candidate
* @return The lowest candidate
*/
#define min(X, Y) ((X) < (Y) ? (X) : (Y))
/**
* Copy an array segment into an array in start to end order
*
* @param src The source array
* @param soff The source array offset
* @param dest The destination array
* @param doff The destination array offset
* @param length The number of elements to copy
*/
inline void arraycopy(byte* src, long soff, byte* dest, long doff, long length)
{
long i;
src += soff;
dest += doff;
#define __(X) dest[X] = src[X]
#define __0 *dest = *src
#define __1 __(0x01)
#define __2 __(0x02); __(0x03)
#define __3 __(0x04); __(0x05); __(0x06); __(0x07)
#define __4 __(0x08); __(0x09); __(0x0A); __(0x0B); __(0x0C); __(0x0D); __(0x0E); __(0x0F)
#define __5 __(0x10); __(0x11); __(0x12); __(0x13); __(0x14); __(0x15); __(0x16); __(0x17); __(0x18); __(0x19); __(0x1A); __(0x1B); __(0x1C); __(0x1D); __(0x1E); __(0x1F)
#define __6 __(0x20); __(0x21); __(0x22); __(0x23); __(0x24); __(0x25); __(0x26); __(0x27); __(0x28); __(0x29); __(0x2A); __(0x2B); __(0x2C); __(0x2D); __(0x2E); __(0x2F); \
__(0x30); __(0x31); __(0x32); __(0x33); __(0x34); __(0x35); __(0x36); __(0x37); __(0x38); __(0x39); __(0x3A); __(0x3B); __(0x3C); __(0x3D); __(0x3E); __(0x3F)
#define __7 __(0x40); __(0x41); __(0x42); __(0x43); __(0x44); __(0x45); __(0x46); __(0x47); __(0x48); __(0x49); __(0x4A); __(0x4B); __(0x4C); __(0x4D); __(0x4E); __(0x4F); \
__(0x50); __(0x51); __(0x52); __(0x53); __(0x54); __(0x55); __(0x56); __(0x57); __(0x58); __(0x59); __(0x5A); __(0x5B); __(0x5C); __(0x5D); __(0x5E); __(0x5F); \
__(0x60); __(0x61); __(0x62); __(0x63); __(0x64); __(0x65); __(0x66); __(0x67); __(0x68); __(0x69); __(0x6A); __(0x6B); __(0x6C); __(0x6D); __(0x6E); __(0x6F); \
__(0x70); __(0x71); __(0x72); __(0x73); __(0x74); __(0x75); __(0x76); __(0x77); __(0x78); __(0x79); __(0x7A); __(0x7B); __(0x7C); __(0x7D); __(0x7E); __(0x7F)
#define __8 __(0x80); __(0x81); __(0x82); __(0x83); __(0x84); __(0x85); __(0x86); __(0x87); __(0x88); __(0x89); __(0x8A); __(0x8B); __(0x8C); __(0x8D); __(0x8E); __(0x8F); \
__(0x90); __(0x91); __(0x92); __(0x93); __(0x94); __(0x95); __(0x96); __(0x97); __(0x98); __(0x99); __(0x9A); __(0x9B); __(0x9C); __(0x9D); __(0x9E); __(0x9F); \
__(0xA0); __(0xA1); __(0xA2); __(0xA3); __(0xA4); __(0xA5); __(0xA6); __(0xA7); __(0xA8); __(0xA9); __(0xAA); __(0xAB); __(0xAC); __(0xAD); __(0xAE); __(0xAF); \
__(0xB0); __(0xB1); __(0xB2); __(0xB3); __(0xB4); __(0xB5); __(0xB6); __(0xB7); __(0xB8); __(0xB9); __(0xBA); __(0xBB); __(0xBC); __(0xBD); __(0xBE); __(0xBF); \
__(0xC0); __(0xC1); __(0xC2); __(0xC3); __(0xC4); __(0xC5); __(0xC6); __(0xC7); __(0xC8); __(0xC9); __(0xCA); __(0xCB); __(0xCC); __(0xCD); __(0xCE); __(0xCF); \
__(0xD0); __(0xD1); __(0xD2); __(0xD3); __(0xD4); __(0xD5); __(0xD6); __(0xD7); __(0xD8); __(0xD9); __(0xDA); __(0xDB); __(0xDC); __(0xDD); __(0xDE); __(0xDF); \
__(0xE0); __(0xE1); __(0xE2); __(0xE3); __(0xE4); __(0xE5); __(0xE6); __(0xE7); __(0xE8); __(0xE9); __(0xEA); __(0xEB); __(0xEC); __(0xED); __(0xEE); __(0xEF); \
__(0xF0); __(0xF1); __(0xF2); __(0xF3); __(0xF4); __(0xF5); __(0xF6); __(0xF7); __(0xF8); __(0xF9); __(0xFA); __(0xFB); __(0xFC); __(0xFD); __(0xFE); __(0xFF)
if ((length & 15))
{
if ((length & 1)) { __0; src += 1; dest += 1; }
if ((length & 2)) { __0; __1; src += 2; dest += 2; }
if ((length & 4)) { __0; __1; __2; src += 4; dest += 4; }
if ((length & 8)) { __0; __1; __2; __3; src += 8; dest += 8; }
}
if ((length & 240))
{
if ((length & 16)) { __0; __1; __2; __3; __4; src += 16; dest += 16; }
if ((length & 32)) { __0; __1; __2; __3; __4; __5; src += 32; dest += 32; }
if ((length & 64)) { __0; __1; __2; __3; __4; __5; __6; src += 64; dest += 64; }
if ((length & 128)) { __0; __1; __2; __3; __4; __5; __6; __7; src += 128; dest += 128; }
}
length &= ~255;
for (i = 0; i < length; i += 256)
{
__0; __1; __2; __3; __4; __5; __6; __7; __8; src += 256; dest += 256;
}
#undef __8
#undef __7
#undef __6
#undef __5
#undef __4
#undef __3
#undef __2
#undef __1
#undef __0
#undef __
}
/**
* Copy an array segment into an array in end to start order
*
* @param src The source array
* @param soff The source array offset
* @param dest The destination array
* @param doff The destination array offset
* @param length The number of elements to copy
*/
inline void revarraycopy(byte* src, long soff, byte* dest, long doff, long length)
{
long copyi;
for (copyi = length - 1; copyi >= 0; copyi--)
dest[copyi + doff] = src[copyi + soff];
}
/**
* Rotate a word
*
* @param X:llong The value to rotate
* @param N:long Rotation steps, may not be 0
* @return :llong The value rotated
*/
#define rotate(X, N) ((((X) >> (w - ((N) % w))) + ((X) << ((N) % w))) & wmod)
/**
* Rotate a 64-bit word
*
* @param X:llong The value to rotate
* @param N:long Rotation steps, may not be 0
* @return :llong The value rotated
*/
#define rotate64(X, N) ((llong)((unsigned llong)(X) >> (64 - (N))) + ((X) << (N)))
/**
* Binary logarithm
*
* @param x The value of which to calculate the binary logarithm
* @return The binary logarithm
*/
static long lb(long x)
{
long rc = 0;
if ((x & 0xFF00) != 0) { rc += 8; x >>= 8; }
if ((x & 0x00F0) != 0) { rc += 4; x >>= 4; }
if ((x & 0x000C) != 0) { rc += 2; x >>= 2; }
if ((x & 0x0002) != 0) rc += 1;
return rc;
}
/**
* Perform one round of computation
*
* @param A The current state
* @param rc Round constant
*/
static void keccakFRound(llong* A, llong rc)
{
llong da, db, dc, dd, de;
/* θ step (step 1 and 2 of 3) */
#define __C(I, J0, J1, J2, J3, J4) C[I] = (A[J0] ^ A[J1]) ^ (A[J2] ^ A[J3]) ^ A[J4]
__C(0, 0, 1, 2, 3, 4);
__C(1, 5, 6, 7, 8, 9);
__C(2, 10, 11, 12, 13, 14);
__C(3, 15, 16, 17, 18, 19);
__C(4, 20, 21, 22, 23, 24);
#undef __C
if (w == 64)
{
da = C[4] ^ rotate64(C[1], 1);
dd = C[2] ^ rotate64(C[4], 1);
db = C[0] ^ rotate64(C[2], 1);
de = C[3] ^ rotate64(C[0], 1);
dc = C[1] ^ rotate64(C[3], 1);
/* ρ and π steps, with last two part of θ */
#define __B(Bi, Ai, Dv, R) B[Bi] = rotate64(A[Ai] ^ Dv, R)
B[0] = A[0] ^ da; __B( 1, 15, dd, 28); __B( 2, 5, db, 1); __B( 3, 20, de, 27); __B( 4, 10, dc, 62);
__B( 5, 6, db, 44); __B( 6, 21, de, 20); __B( 7, 11, dc, 6); __B( 8, 1, da, 36); __B( 9, 16, dd, 55);
__B(10, 12, dc, 43); __B(11, 2, da, 3); __B(12, 17, dd, 25); __B(13, 7, db, 10); __B(14, 22, de, 39);
__B(15, 18, dd, 21); __B(16, 8, db, 45); __B(17, 23, de, 8); __B(18, 13, dc, 15); __B(19, 3, da, 41);
__B(20, 24, de, 14); __B(21, 14, dc, 61); __B(22, 4, da, 18); __B(23, 19, dd, 56); __B(24, 9, db, 2);
#undef __B
}
else
{
da = C[4] ^ rotate(C[1], 1);
dd = C[2] ^ rotate(C[4], 1);
db = C[0] ^ rotate(C[2], 1);
de = C[3] ^ rotate(C[0], 1);
dc = C[1] ^ rotate(C[3], 1);
/* ρ and π steps, with last two part of θ */
#define __B(Bi, Ai, Dv, R) B[Bi] = rotate(A[Ai] ^ Dv, R)
B[0] = A[0] ^ da; __B( 1, 15, dd, 28); __B( 2, 5, db, 1); __B( 3, 20, de, 27); __B( 4, 10, dc, 62);
__B( 5, 6, db, 44); __B( 6, 21, de, 20); __B( 7, 11, dc, 6); __B( 8, 1, da, 36); __B( 9, 16, dd, 55);
__B(10, 12, dc, 43); __B(11, 2, da, 3); __B(12, 17, dd, 25); __B(13, 7, db, 10); __B(14, 22, de, 39);
__B(15, 18, dd, 21); __B(16, 8, db, 45); __B(17, 23, de, 8); __B(18, 13, dc, 15); __B(19, 3, da, 41);
__B(20, 24, de, 14); __B(21, 14, dc, 61); __B(22, 4, da, 18); __B(23, 19, dd, 56); __B(24, 9, db, 2);
#undef __B
}
/* ξ step */
#define __A(X, X5, X10) A[X] = B[X] ^ ((~(B[X5])) & B[X10])
__A( 0, 5, 10); __A( 1, 6, 11); __A( 2, 7, 12); __A( 3, 8, 13); __A( 4, 9, 14);
__A( 5, 10, 15); __A( 6, 11, 16); __A( 7, 12, 17); __A( 8, 13, 18); __A( 9, 14, 19);
__A(10, 15, 20); __A(11, 16, 21); __A(12, 17, 22); __A(13, 18, 23); __A(14, 19, 24);
__A(15, 20, 0); __A(16, 21, 1); __A(17, 22, 2); __A(18, 23, 3); __A(19, 24, 4);
__A(20, 0, 5); __A(21, 1, 6); __A(22, 2, 7); __A(23, 3, 8); __A(24, 4, 9);
#undef __A
/* ι step */
A[0] ^= rc;
}
/**
* Perform Keccak-f function
*
* @param A The current state
*/
static void keccakF(llong* A)
{
long i;
if (nr == 24)
{
keccakFRound(A, 0x0000000000000001);
keccakFRound(A, 0x0000000000008082);
keccakFRound(A, 0x800000000000808A);
keccakFRound(A, 0x8000000080008000);
keccakFRound(A, 0x000000000000808B);
keccakFRound(A, 0x0000000080000001);
keccakFRound(A, 0x8000000080008081);
keccakFRound(A, 0x8000000000008009);
keccakFRound(A, 0x000000000000008A);
keccakFRound(A, 0x0000000000000088);
keccakFRound(A, 0x0000000080008009);
keccakFRound(A, 0x000000008000000A);
keccakFRound(A, 0x000000008000808B);
keccakFRound(A, 0x800000000000008B);
keccakFRound(A, 0x8000000000008089);
keccakFRound(A, 0x8000000000008003);
keccakFRound(A, 0x8000000000008002);
keccakFRound(A, 0x8000000000000080);
keccakFRound(A, 0x000000000000800A);
keccakFRound(A, 0x800000008000000A);
keccakFRound(A, 0x8000000080008081);
keccakFRound(A, 0x8000000000008080);
keccakFRound(A, 0x0000000080000001);
keccakFRound(A, 0x8000000080008008);
}
else
for (i = 0; i < nr; i++)
keccakFRound(A, RC[i] & wmod);
}
/**
* Convert a chunk of byte:s to a word
*
* @param message The message
* @param msglen The length of the message
* @param rr Bitrate in bytes
* @param ww Word size in bytes
* @param off The offset in the message
* @return Lane
*/
inline llong toLane(byte* message, long msglen, long rr, long ww, long off)
{
llong rc = 0;
long n = min(msglen, rr), i;
for (i = off + ww - 1; i >= off; i--)
rc = (rc << 8) | ((i < n) ? (llong)(message[i] & 255) : 0L);
return rc;
}
/**
* Convert a chunk of byte:s to a 64-bit word
*
* @param message The message
* @param msglen The length of the message
* @param rr Bitrate in bytes
* @param off The offset in the message
* @return Lane
*/
inline llong toLane64(byte* message, long msglen, long rr, long off)
{
long n = min(msglen, rr);
return ((off + 7 < n) ? ((llong)(message[off + 7] & 255) << 56) : 0L) |
((off + 6 < n) ? ((llong)(message[off + 6] & 255) << 48) : 0L) |
((off + 5 < n) ? ((llong)(message[off + 5] & 255) << 40) : 0L) |
((off + 4 < n) ? ((llong)(message[off + 4] & 255) << 32) : 0L) |
((off + 3 < n) ? ((llong)(message[off + 3] & 255) << 24) : 0L) |
((off + 2 < n) ? ((llong)(message[off + 2] & 255) << 16) : 0L) |
((off + 1 < n) ? ((llong)(message[off + 1] & 255) << 8) : 0L) |
((off < n) ? ((llong)(message[off ] & 255) ) : 0L);
}
/**
* pad 10*1
*
* @param msg The message to pad
* @param len The length of the message
* @param r The bitrate
* @param bits The number of bits in the end of the message that does not make a whole byte
* @param outlen The length of the padded message (out parameter)
* @return The message padded
*/
inline byte* pad10star1(byte* msg, long len, long r, long bits, long* outlen)
{
byte* message;
byte b;
long i, ll, nbrf, nrf;
len = ((len - (bits + 7) / 8) << 3) + bits;
nrf = len >> 3;
nbrf = len & 7;
ll = len % r;
b = (byte)(nbrf == 0 ? 1 : (msg[nrf] | (1 << nbrf)));
if ((r - 8 <= ll) && (ll <= r - 2))
{
message = (byte*)malloc(len = nrf + 1);
message[nrf] = (byte)(b ^ 128);
}
else
{
byte* M;
long N;
len = (nrf + 1) << 3;
len = ((len - (len % r) + (r - 8)) >> 3) + 1;
message = (byte*)malloc(len);
message[nrf] = b;
N = len - nrf - 1;
M = message + nrf + 1;
#define __(X) M[X] = 0
#define __0 *M = 0
#define __1 __(0x01)
#define __2 __(0x02); __(0x03)
#define __3 __(0x04); __(0x05); __(0x06); __(0x07)
#define __4 __(0x08); __(0x09); __(0x0A); __(0x0B); __(0x0C); __(0x0D); __(0x0E); __(0x0F)
#define __5 __(0x10); __(0x11); __(0x12); __(0x13); __(0x14); __(0x15); __(0x16); __(0x17); __(0x18); __(0x19); __(0x1A); __(0x1B); __(0x1C); __(0x1D); __(0x1E); __(0x1F)
#define __6 __(0x20); __(0x21); __(0x22); __(0x23); __(0x24); __(0x25); __(0x26); __(0x27); __(0x28); __(0x29); __(0x2A); __(0x2B); __(0x2C); __(0x2D); __(0x2E); __(0x2F); \
__(0x30); __(0x31); __(0x32); __(0x33); __(0x34); __(0x35); __(0x36); __(0x37); __(0x38); __(0x39); __(0x3A); __(0x3B); __(0x3C); __(0x3D); __(0x3E); __(0x3F)
#define __7 __(0x40); __(0x41); __(0x42); __(0x43); __(0x44); __(0x45); __(0x46); __(0x47); __(0x48); __(0x49); __(0x4A); __(0x4B); __(0x4C); __(0x4D); __(0x4E); __(0x4F); \
__(0x50); __(0x51); __(0x52); __(0x53); __(0x54); __(0x55); __(0x56); __(0x57); __(0x58); __(0x59); __(0x5A); __(0x5B); __(0x5C); __(0x5D); __(0x5E); __(0x5F); \
__(0x60); __(0x61); __(0x62); __(0x63); __(0x64); __(0x65); __(0x66); __(0x67); __(0x68); __(0x69); __(0x6A); __(0x6B); __(0x6C); __(0x6D); __(0x6E); __(0x6F); \
__(0x70); __(0x71); __(0x72); __(0x73); __(0x74); __(0x75); __(0x76); __(0x77); __(0x78); __(0x79); __(0x7A); __(0x7B); __(0x7C); __(0x7D); __(0x7E); __(0x7F)
#define __8 __(0x80); __(0x81); __(0x82); __(0x83); __(0x84); __(0x85); __(0x86); __(0x87); __(0x88); __(0x89); __(0x8A); __(0x8B); __(0x8C); __(0x8D); __(0x8E); __(0x8F); \
__(0x90); __(0x91); __(0x92); __(0x93); __(0x94); __(0x95); __(0x96); __(0x97); __(0x98); __(0x99); __(0x9A); __(0x9B); __(0x9C); __(0x9D); __(0x9E); __(0x9F); \
__(0xA0); __(0xA1); __(0xA2); __(0xA3); __(0xA4); __(0xA5); __(0xA6); __(0xA7); __(0xA8); __(0xA9); __(0xAA); __(0xAB); __(0xAC); __(0xAD); __(0xAE); __(0xAF); \
__(0xB0); __(0xB1); __(0xB2); __(0xB3); __(0xB4); __(0xB5); __(0xB6); __(0xB7); __(0xB8); __(0xB9); __(0xBA); __(0xBB); __(0xBC); __(0xBD); __(0xBE); __(0xBF); \
__(0xC0); __(0xC1); __(0xC2); __(0xC3); __(0xC4); __(0xC5); __(0xC6); __(0xC7); __(0xC8); __(0xC9); __(0xCA); __(0xCB); __(0xCC); __(0xCD); __(0xCE); __(0xCF); \
__(0xD0); __(0xD1); __(0xD2); __(0xD3); __(0xD4); __(0xD5); __(0xD6); __(0xD7); __(0xD8); __(0xD9); __(0xDA); __(0xDB); __(0xDC); __(0xDD); __(0xDE); __(0xDF); \
__(0xE0); __(0xE1); __(0xE2); __(0xE3); __(0xE4); __(0xE5); __(0xE6); __(0xE7); __(0xE8); __(0xE9); __(0xEA); __(0xEB); __(0xEC); __(0xED); __(0xEE); __(0xEF); \
__(0xF0); __(0xF1); __(0xF2); __(0xF3); __(0xF4); __(0xF5); __(0xF6); __(0xF7); __(0xF8); __(0xF9); __(0xFA); __(0xFB); __(0xFC); __(0xFD); __(0xFE); __(0xFF)
if ((N & 15))
{
if ((N & 1)) { __0; M += 1; }
if ((N & 2)) { __0; __1; M += 2; }
if ((N & 4)) { __0; __1; __2; M += 4; }
if ((N & 8)) { __0; __1; __2; __3; M += 8; }
}
if ((N & 240))
{
if ((N & 16)) { __0; __1; __2; __3; __4; M += 16; }
if ((N & 32)) { __0; __1; __2; __3; __4; __5; M += 32; }
if ((N & 64)) { __0; __1; __2; __3; __4; __5; __6; M += 64; }
if ((N & 128)) { __0; __1; __2; __3; __4; __5; __6; __7; M += 128; }
}
N &= ~255;
for (i = 0; i < N; i += 256)
{
__0; __1; __2; __3; __4; __5; __6; __7; __8; M += 256;
}
#undef __8
#undef __7
#undef __6
#undef __5
#undef __4
#undef __3
#undef __2
#undef __1
#undef __0
#undef __
message[len - 1] = -128;
}
arraycopy(msg, 0, message, 0, nrf);
*outlen = len;
return message;
}
/**
* Initialise Keccak sponge
*
* @param bitrate The bitrate
* @param capacity The capacity
* @param output The output size
*/
void initialise(long bitrate, long capacity, long output)
{
long i;
r = bitrate;
n = output;
c = capacity;
b = r + c;
w = b / 25;
l = lb(w);
nr = 12 + (l << 1);
if (w == 64)
wmod = -1;
else
{
wmod = 1;
wmod <<= w;
wmod--;
}
S = (llong*)malloc(25 * sizeof(llong));
M = (byte*)malloc(mlen = (r * b) >> 2);
mptr = 0;
for (i = 0; i < 25; i++)
*(S + i) = 0;
}
/**
* Dispose of the Keccak sponge
*/
extern void dispose()
{
if (S != null)
{
free(S);
S = null;
}
if (M != null)
{
free(M);
M = null;
}
}
/**
* Absorb the more of the message message to the Keccak sponge
*
* @param msg The partial message
* @param msglen The length of the partial message
*/
void update(byte* msg, long msglen)
{
long rr = r >> 3;
long ww = w >> 3;
long i, len;
byte* message;
byte* _msg;
long nnn;
if (mptr + msglen > mlen)
{
byte* buf = (byte*)malloc(mlen = (mlen + msglen) << 1);
arraycopy(M, 0, buf, 0, mptr);
free(M);
M = buf;
}
arraycopy(msg, 0, M, mptr, msglen);
len = mptr += msglen;
len -= len % ((r * b) >> 3);
message = (byte*)malloc(len);
arraycopy(M, 0, message, 0, len);
mptr -= len;
revarraycopy(M, nnn = len, M, 0, mptr);
_msg = message;
/* Absorbing phase */
if (ww == 8)
for (i = 0; i < nnn; i += rr)
{
#define __S(Si, OFF) S[Si] ^= toLane64(message, len, rr, OFF)
__S( 0, 0); __S( 5, 8); __S(10, 16); __S(15, 24); __S(20, 32);
__S( 1, 40); __S( 6, 48); __S(11, 56); __S(16, 64); __S(21, 72);
__S( 2, 80); __S( 7, 88); __S(12, 96); __S(17, 104); __S(22, 112);
__S( 3, 120); __S( 8, 128); __S(13, 136); __S(18, 144); __S(23, 152);
__S( 4, 160); __S( 9, 168); __S(14, 176); __S(19, 184); __S(24, 192);
#undef __S
keccakF(S);
message += rr;
len -= rr;
}
else
for (i = 0; i < nnn; i += rr)
{
#define __S(Si, OFF) S[Si] ^= toLane(message, len, rr, ww, OFF * ww)
__S( 0, 0); __S( 5, 1); __S(10, 2); __S(15, 3); __S(20, 4);
__S( 1, 5); __S( 6, 6); __S(11, 7); __S(16, 8); __S(21, 9);
__S( 2, 10); __S( 7, 11); __S(12, 12); __S(17, 13); __S(22, 14);
__S( 3, 15); __S( 8, 16); __S(13, 17); __S(18, 18); __S(23, 19);
__S( 4, 20); __S( 9, 21); __S(14, 22); __S(19, 23); __S(24, 24);
#undef __S
keccakF(S);
message += rr;
len -= rr;
}
free(_msg);
}
/**
* Absorb the last part of the message and squeeze the Keccak sponge
*
* @param msg The rest of the message, may be {@code null}
* @param msglen The length of the partial message
* @param bits The number of bits at the end of the message not covered by msglen
* @param suffix The suffix concatenate to the message
* @param suffix_len The length of the suffix
* @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null}
* @return The hash sum, or {@code null} if withReturn is {@code false}
*/
byte* digest(byte* msg, long msglen, long bits, int* suffix, long suffix_len, boolean withReturn)
{
byte* message;
byte* _msg;
byte* rc;
long rr = r >> 3, len;
long nn = (n + 7) >> 3, olen;
long ww = w >> 3, ni;
long i, j = 0, ptr = 0, _;
long nnn;
if (msg == null)
msglen = bits = 0;
msglen += bits >> 3;
if ((bits &= 7))
msg[msglen] &= (1 << bits) - 1;
if (suffix_len)
{
msg = (byte*)realloc(msg, msglen + ((suffix_len + bits + 7) >> 3));
if (!bits)
msg[msglen] = 0;
for (i = 0; i < suffix_len; i++)
{
msg[msglen] |= suffix[i] << bits++;
if (bits == 8)
{
bits = 0;
msglen++;
msg[msglen] = 0;
}
}
}
if (bits)
msglen++;
if (mptr + msglen > mlen)
{
byte* buf = (byte*)malloc(mlen += msglen);
arraycopy(M, 0, buf, 0, mptr);
free(M);
M = buf;
}
arraycopy(msg, 0, M, mptr, msglen);
message = pad10star1(M, mptr + msglen, r, bits, &len);
free(M);
M = null;
rc = (byte*)malloc((n + 7) >> 3);
_msg = message;
nnn = len;
/* Absorbing phase */
if (ww == 8)
for (i = 0; i < nnn; i += rr)
{
#define __S(Si, OFF) S[Si] ^= toLane64(message, len, rr, OFF)
__S( 0, 0); __S( 5, 8); __S(10, 16); __S(15, 24); __S(20, 32);
__S( 1, 40); __S( 6, 48); __S(11, 56); __S(16, 64); __S(21, 72);
__S( 2, 80); __S( 7, 88); __S(12, 96); __S(17, 104); __S(22, 112);
__S( 3, 120); __S( 8, 128); __S(13, 136); __S(18, 144); __S(23, 152);
__S( 4, 160); __S( 9, 168); __S(14, 176); __S(19, 184); __S(24, 192);
#undef __S
keccakF(S);
message += rr;
len -= rr;
}
else
for (i = 0; i < nnn; i += rr)
{
#define __S(Si, OFF) S[Si] ^= toLane(message, len, rr, ww, OFF * ww)
__S( 0, 0); __S( 5, 1); __S(10, 2); __S(15, 3); __S(20, 4);
__S( 1, 5); __S( 6, 6); __S(11, 7); __S(16, 8); __S(21, 9);
__S( 2, 10); __S( 7, 11); __S(12, 12); __S(17, 13); __S(22, 14);
__S( 3, 15); __S( 8, 16); __S(13, 17); __S(18, 18); __S(23, 19);
__S( 4, 20); __S( 9, 21); __S(14, 22); __S(19, 23); __S(24, 24);
#undef __S
keccakF(S);
message += rr;
len -= rr;
}
free(_msg);
/* Squeezing phase */
olen = n;
if (withReturn)
{
ni = min(25, rr);
while (olen > 0)
{
i = 0;
while ((i < ni) && (j < nn))
{
llong v = S[(i % 5) * 5 + i / 5];
for (_ = 0; _ < ww; _++)
{
if (j < nn)
rc[ptr++] = (byte)v;
v >>= 8;
j += 1;
}
i += 1;
}
olen -= r;
if (olen > 0)
keccakF(S);
}
if ((n & 7))
rc[n >> 3] &= (1 << (n & 7)) - 1;
return rc;
}
while ((olen -= r) > 0)
keccakF(S);
return null;
}
/**
* Force some rounds of Keccak-f
*
* @param times The number of rounds
*/
void simpleSqueeze(long times)
{
long i;
for (i = 0; i < times; i++)
keccakF(S);
}
/**
* Squeeze as much as is needed to get a digest a number of times
*
* @param times The number of digests
*/
void fastSqueeze(long times)
{
long i, olen;
for (i = 0; i < times; i++)
{
keccakF(S); /* Last squeeze did not do a ending squeeze */
olen = n;
while ((olen -= r) > 0)
keccakF(S);
}
}
/**
* Squeeze out another digest
*
* @return The hash sum
*/
byte* squeeze()
{
long nn, ww, olen, i, j, ptr, ni;
byte* rc;
keccakF(S); /* Last squeeze did not do a ending squeeze */
ww = w >> 3;
rc = (byte*)malloc(nn = (n + 7) >> 3);
olen = n;
j = ptr = 0;
ni = (25 < r >> 3) ? 25 : (r >> 3);
while (olen > 0)
{
i = 0;
while ((i < ni) && (j < nn))
{
long _, v = S[(i % 5) * 5 + i / 5];
for (_ = 0; _ < ww; _++)
{
if (j < nn)
*(rc + ptr++) = (byte)v;
v >>= 8;
j += 1;
}
i += 1;
}
olen -= r;
if (olen > 0)
keccakF(S);
}
if (n & 7)
rc[nn - 1] &= (1 << (n & 7)) - 1;
return rc;
}
JNIEXPORT void JNICALL Java_SHA3_initialise(JNIEnv* env, jclass class, jint bitrate, jint capacity, jint output)
{
(void) env;
(void) class;
initialise(bitrate, capacity, output);
}
JNIEXPORT void JNICALL Java_SHA3_update(JNIEnv* env, jclass class, jbyteArray msg, jint msglen)
{
(void) class;
if ((msg != null) && (msglen != 0))
update((byte*)((*env)->GetByteArrayElements(env, msg, 0)), msglen);
}
JNIEXPORT jbyteArray JNICALL Java_SHA3_digest(JNIEnv* env, jclass class, jbyteArray msg, jint msglen, jint bits, jintArray suffix, jboolean withReturn)
{
jbyte* rcn;
jbyteArray rcj = null;
int* suffix_elems = (int*)((*env)->GetIntArrayElements(env, suffix, 0));
long suffix_len = (long)((*env)->GetArrayLength(env, suffix));
(void) class;
if ((msg != null) && (msglen != 0))
rcn = (jbyte*)digest((byte*)((*env)->GetByteArrayElements(env, msg, 0)), msglen,
bits, suffix_elems, suffix_len, withReturn);
else
rcn = (jbyte*)digest(null, 0, 0, suffix_elems, suffix_len, withReturn);
if (withReturn)
{
rcj = (*env)->NewByteArray(env, (n + 7) >> 3);
(*env)->SetByteArrayRegion(env, rcj, 0, (n + 7) >> 3, rcn);
}
return rcj;
}