/** * sha3sum – SHA-3 (Keccak) checksum calculator * * Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "sha3.h" #if __x86_64__ || __ppc64__ #define llong long int #else #define llong long long int #endif #define null 0 #define byte char #define boolean long #define true 1 #define false 0 #define min(X, Y) ((X) < (Y) ? (X) : (Y)) #define arraycopy(src, soff, dest, doff, length) {long copyi; for (copyi = 0; copyi < length; copyi++) dest[copyi + doff] = src[copyi + soff];} #define revarraycopy(src, soff, dest, doff, length) {long copyi; for (copyi = length - 1; copyi >= 0; copyi--) dest[copyi + doff] = src[copyi + soff];} /** * Round contants */ static const llong RC[] = { 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L, 0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L, 0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL, 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L, 0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL, 0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L}; /** * Keccak-f round temporary */ static llong B[25]; /** * Keccak-f round temporary */ static llong C[5]; /** * The bitrate */ static long r = 0; /** * The capacity */ static long c = 0; /** * The output size */ static long n = 0; /** * The state size */ static long b = 0; /** * The word size */ static long w = 0; /** * The word mask */ static llong wmod = 0; /** * ℓ, the binary logarithm of the word size */ static long l = 0; /** * 12 + 2ℓ, the number of rounds */ static long nr = 0; /** * The current state */ static llong* S = null; /** * Left over water to fill the sponge with at next update */ static byte* M = null; /** * Pointer for {@link #M} */ static long mptr = 0; /** * Size of {@link #M} */ static long mlen = 0; /** * Rotate a word * * @param x The value to rotate * @param n Rotation steps, may not be 0 * @return The value rotated */ static llong rotate(llong x, long n) { llong m = n % w; return ((x >> (w - m)) + (x << m)) & wmod; } /** * Rotate a 64-bit word * * @param x The value to rotate * @param n Rotation steps, may not be 0 * @return The value rotated */ static llong rotate64(llong x, long n) { return (llong)((unsigned llong)x >> (w - n)) + (x << n); } /** * Binary logarithm * * @param x The value of which to calculate the binary logarithm * @return The binary logarithm */ static long lb(long x) { return (((x & 0xFF00) == 0 ? 0 : 8) + ((x & 0xF0F0) == 0 ? 0 : 4)) + (((x & 0xCCCC) == 0 ? 0 : 2) + ((x & 0xAAAA) == 0 ? 0 : 1)); } /** * Perform one round of computation * * @param A The current state * @param rc Round constant */ static void keccakFRound(llong* A, llong rc) { llong da, db, dc, dd, de; long i, j; /* θ step (step 1 of 3) */ for (i = 0, j = 0; i < 5; i++, j += 5) C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4]; if (w == 64) { /* ρ and π steps, with last two part of θ */ B[0] = A[ 0] ^ (da = C[4] ^ rotate64(C[1], 1)); B[1] = rotate64(A[15] ^ (dd = C[2] ^ rotate64(C[4], 1)), 28); B[2] = rotate64(A[ 5] ^ (db = C[0] ^ rotate64(C[2], 1)), 1); B[3] = rotate64(A[20] ^ (de = C[3] ^ rotate64(C[0], 1)), 27); B[4] = rotate64(A[10] ^ (dc = C[1] ^ rotate64(C[3], 1)), 62); B[5] = rotate64(A[ 6] ^ db, 44); B[6] = rotate64(A[21] ^ de, 20); B[7] = rotate64(A[11] ^ dc, 6); B[8] = rotate64(A[ 1] ^ da, 36); B[9] = rotate64(A[16] ^ dd, 55); B[10] = rotate64(A[12] ^ dc, 43); B[11] = rotate64(A[ 2] ^ da, 3); B[12] = rotate64(A[17] ^ dd, 25); B[13] = rotate64(A[ 7] ^ db, 10); B[14] = rotate64(A[22] ^ de, 39); B[15] = rotate64(A[18] ^ dd, 21); B[16] = rotate64(A[ 8] ^ db, 45); B[17] = rotate64(A[23] ^ de, 8); B[18] = rotate64(A[13] ^ dc, 15); B[19] = rotate64(A[ 3] ^ da, 41); B[20] = rotate64(A[24] ^ de, 14); B[21] = rotate64(A[14] ^ dc, 61); B[22] = rotate64(A[ 4] ^ da, 18); B[23] = rotate64(A[19] ^ dd, 56); B[24] = rotate64(A[ 9] ^ db, 2); } else { /* ρ and π steps, with last two part of θ */ B[0] = A[ 0] ^ (da = C[4] ^ rotate(C[1], 1)); B[1] = rotate(A[15] ^ (dd = C[2] ^ rotate(C[4], 1)), 28); B[2] = rotate(A[ 5] ^ (db = C[0] ^ rotate(C[2], 1)), 1); B[3] = rotate(A[20] ^ (de = C[3] ^ rotate(C[0], 1)), 27); B[4] = rotate(A[10] ^ (dc = C[1] ^ rotate(C[3], 1)), 62); B[5] = rotate(A[ 6] ^ db, 44); B[6] = rotate(A[21] ^ de, 20); B[7] = rotate(A[11] ^ dc, 6); B[8] = rotate(A[ 1] ^ da, 36); B[9] = rotate(A[16] ^ dd, 55); B[10] = rotate(A[12] ^ dc, 43); B[11] = rotate(A[ 2] ^ da, 3); B[12] = rotate(A[17] ^ dd, 25); B[13] = rotate(A[ 7] ^ db, 10); B[14] = rotate(A[22] ^ de, 39); B[15] = rotate(A[18] ^ dd, 21); B[16] = rotate(A[ 8] ^ db, 45); B[17] = rotate(A[23] ^ de, 8); B[18] = rotate(A[13] ^ dc, 15); B[19] = rotate(A[ 3] ^ da, 41); B[20] = rotate(A[24] ^ de, 14); B[21] = rotate(A[14] ^ dc, 61); B[22] = rotate(A[ 4] ^ da, 18); B[23] = rotate(A[19] ^ dd, 56); B[24] = rotate(A[ 9] ^ db, 2); } /* ξ step */ for (i = 0; i < 15; i++) A[i ] = B[i ] ^ ((~(B[i + 5])) & B[i + 10]); for (i = 0; i < 5; i++) { A[i + 15] = B[i + 15] ^ ((~(B[i + 20])) & B[i ]); A[i + 20] = B[i + 20] ^ ((~(B[i ])) & B[i + 5]); } /* ι step */ A[0] ^= rc; } /** * Perform Keccak-f function * * @param A The current state */ static void keccakF(llong* A) { long i; if (nr == 24) for (i = 0; i < nr; i++) keccakFRound(A, RC[i]); else for (i = 0; i < nr; i++) keccakFRound(A, RC[i] & wmod); } /** * Convert a chunk of byte:s to a word * * @param message The message * @param msglen The length of the message * @param rr Bitrate in bytes * @param ww Word size in bytes * @param off The offset in the message * @return Lane */ static llong toLane(byte* message, long msglen, long rr, long ww, long off) { llong rc = 0; long n = min(msglen, rr), i; for (i = off + ww - 1; i >= off; i--) rc = (rc << 8) | ((i < n) ? (llong)(message[i] & 255) : 0L); return rc; } /** * Convert a chunk of byte:s to a 64-bit word * * @param message The message * @param msglen The length of the message * @param rr Bitrate in bytes * @param off The offset in the message * @return Lane */ static llong toLane64(byte* message, long msglen, long rr, long off) { long n = min(msglen, rr); return ((off + 7 < n) ? ((llong)(message[off + 7] & 255) << 56) : 0L) | ((off + 6 < n) ? ((llong)(message[off + 6] & 255) << 48) : 0L) | ((off + 5 < n) ? ((llong)(message[off + 5] & 255) << 40) : 0L) | ((off + 4 < n) ? ((llong)(message[off + 4] & 255) << 32) : 0L) | ((off + 3 < n) ? ((llong)(message[off + 3] & 255) << 24) : 0L) | ((off + 2 < n) ? ((llong)(message[off + 2] & 255) << 16) : 0L) | ((off + 1 < n) ? ((llong)(message[off + 1] & 255) << 8) : 0L) | ((off < n) ? ((llong)(message[off] & 255)) : 0L); } /** * pad 10*1 * * @param msg The message to pad * @param len The length of the message * @param r The bitrate * @param outlen The length of the padded message (out parameter) * @return The message padded */ static byte* pad10star1(byte* msg, long len, long r, long* outlen) { byte* message; long nrf = len >> 3; long nbrf = len & 7; long ll = len % r; long i; byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf))); if ((r - 8 <= ll) && (ll <= r - 2)) { message = (byte*)malloc(len = nrf + 1); message[nrf] = (byte)(b ^ 128); } else { len = (nrf + 1) << 3; len = ((len - (len % r) + (r - 8)) >> 3) + 1; message = (byte*)malloc(len); message[nrf] = b; for (i = nrf + 1; i < len; i++) message[i] = 0; message[len - 1] = -128; } arraycopy(msg, 0, message, 0, nrf); *outlen = len; return message; } /** * Initialise Keccak sponge * * @param bitrate The bitrate * @param capacity The capacity * @param output The output size */ extern void initialise(long bitrate, long capacity, long output) { long i; r = bitrate; n = output; c = capacity; b = r + c; w = b / 25; l = lb(w); nr = 12 + (l << 1); wmod = w == 64 ? -1LL ? (1LL << w) - 1LL; S = (llong*)malloc(25 * sizeof(llong)); M = (byte*)malloc(mlen = (r * b) >> 2); mptr = 0; for (i = 0; i < 25; i++) *(S + i) = 0; } /** * Dispose of the Keccak sponge */ extern void dispose() { if (S != null) { free(S); S = null; } if (M != null) { free(M); M = null; } } /** * Absorb the more of the message message to the Keccak sponge * * @param msg The partial message * @param msglen The length of the partial message */ extern void update(byte* msg, long msglen) { long rr = r >> 3; long ww = w >> 3; long i, len; byte* message; if (mptr + msglen > mlen) { byte* buf = (byte*)malloc(mlen = (mlen + msglen) << 1); arraycopy(M, 0, buf, 0, mptr); free(M); M = buf; } arraycopy(msg, 0, M, mptr, msglen); len = mptr += msglen; len -= len % ((r * b) >> 3); message = (byte*)malloc(len); arraycopy(M, 0, message, 0, len); mptr -= len; revarraycopy(M, len, M, 0, mptr); /* Absorbing phase */ if (ww == 8) for (i = 0; i < len; i += rr) { S[ 0] ^= toLane64(message, len, rr, i + 0); S[ 5] ^= toLane64(message, len, rr, i + 8); S[10] ^= toLane64(message, len, rr, i + 16); S[15] ^= toLane64(message, len, rr, i + 24); S[20] ^= toLane64(message, len, rr, i + 32); S[ 1] ^= toLane64(message, len, rr, i + 40); S[ 6] ^= toLane64(message, len, rr, i + 48); S[11] ^= toLane64(message, len, rr, i + 56); S[16] ^= toLane64(message, len, rr, i + 64); S[21] ^= toLane64(message, len, rr, i + 72); S[ 2] ^= toLane64(message, len, rr, i + 80); S[ 7] ^= toLane64(message, len, rr, i + 88); S[12] ^= toLane64(message, len, rr, i + 96); S[17] ^= toLane64(message, len, rr, i + 104); S[22] ^= toLane64(message, len, rr, i + 112); S[ 3] ^= toLane64(message, len, rr, i + 120); S[ 8] ^= toLane64(message, len, rr, i + 128); S[13] ^= toLane64(message, len, rr, i + 136); S[18] ^= toLane64(message, len, rr, i + 144); S[23] ^= toLane64(message, len, rr, i + 152); S[ 4] ^= toLane64(message, len, rr, i + 160); S[ 9] ^= toLane64(message, len, rr, i + 168); S[14] ^= toLane64(message, len, rr, i + 176); S[19] ^= toLane64(message, len, rr, i + 184); S[24] ^= toLane64(message, len, rr, i + 192); keccakF(S); } else for (i = 0; i < len; i += rr) { S[ 0] ^= toLane(message, len, rr, ww, i + 0 ); S[ 5] ^= toLane(message, len, rr, ww, i + w); S[10] ^= toLane(message, len, rr, ww, i + 2 * w); S[15] ^= toLane(message, len, rr, ww, i + 3 * w); S[20] ^= toLane(message, len, rr, ww, i + 4 * w); S[ 1] ^= toLane(message, len, rr, ww, i + 5 * w); S[ 6] ^= toLane(message, len, rr, ww, i + 6 * w); S[11] ^= toLane(message, len, rr, ww, i + 7 * w); S[16] ^= toLane(message, len, rr, ww, i + 8 * w); S[21] ^= toLane(message, len, rr, ww, i + 9 * w); S[ 2] ^= toLane(message, len, rr, ww, i + 10 * w); S[ 7] ^= toLane(message, len, rr, ww, i + 11 * w); S[12] ^= toLane(message, len, rr, ww, i + 12 * w); S[17] ^= toLane(message, len, rr, ww, i + 13 * w); S[22] ^= toLane(message, len, rr, ww, i + 14 * w); S[ 3] ^= toLane(message, len, rr, ww, i + 15 * w); S[ 8] ^= toLane(message, len, rr, ww, i + 16 * w); S[13] ^= toLane(message, len, rr, ww, i + 17 * w); S[18] ^= toLane(message, len, rr, ww, i + 18 * w); S[23] ^= toLane(message, len, rr, ww, i + 19 * w); S[ 4] ^= toLane(message, len, rr, ww, i + 20 * w); S[ 9] ^= toLane(message, len, rr, ww, i + 21 * w); S[14] ^= toLane(message, len, rr, ww, i + 22 * w); S[19] ^= toLane(message, len, rr, ww, i + 23 * w); S[24] ^= toLane(message, len, rr, ww, i + 24 * w); keccakF(S); } free(message); } /** * Absorb the last part of the message and squeeze the Keccak sponge * * @param msg The rest of the message, may be {@code null} * @param msglen The length of the partial message */ extern byte* digest(byte* msg, long msglen) { byte* message; byte* rc; long rr = r >> 3, len; long nn = n >> 3, olen; long ww = w >> 3, ni; long i, j = 0, ptr = 0, _; if ((msg == null) || (msglen == 0)) message = pad10star1(M, mptr, r, &len); else { if (mptr + msglen > mlen) { byte* buf = (byte*)malloc(mlen += msglen); arraycopy(M, 0, buf, 0, mptr); free(M); M = buf; } arraycopy(msg, 0, M, mptr, msglen); message = pad10star1(M, mptr + msglen, r, &len); } free(M); M = null; rc = (byte*)malloc((n + 7) >> 3); /* Absorbing phase */ if (ww == 8) for (i = 0; i < len; i += rr) { S[ 0] ^= toLane64(message, len, rr, i + 0); S[ 5] ^= toLane64(message, len, rr, i + 8); S[10] ^= toLane64(message, len, rr, i + 16); S[15] ^= toLane64(message, len, rr, i + 24); S[20] ^= toLane64(message, len, rr, i + 32); S[ 1] ^= toLane64(message, len, rr, i + 40); S[ 6] ^= toLane64(message, len, rr, i + 48); S[11] ^= toLane64(message, len, rr, i + 56); S[16] ^= toLane64(message, len, rr, i + 64); S[21] ^= toLane64(message, len, rr, i + 72); S[ 2] ^= toLane64(message, len, rr, i + 80); S[ 7] ^= toLane64(message, len, rr, i + 88); S[12] ^= toLane64(message, len, rr, i + 96); S[17] ^= toLane64(message, len, rr, i + 104); S[22] ^= toLane64(message, len, rr, i + 112); S[ 3] ^= toLane64(message, len, rr, i + 120); S[ 8] ^= toLane64(message, len, rr, i + 128); S[13] ^= toLane64(message, len, rr, i + 136); S[18] ^= toLane64(message, len, rr, i + 144); S[23] ^= toLane64(message, len, rr, i + 152); S[ 4] ^= toLane64(message, len, rr, i + 160); S[ 9] ^= toLane64(message, len, rr, i + 168); S[14] ^= toLane64(message, len, rr, i + 176); S[19] ^= toLane64(message, len, rr, i + 184); S[24] ^= toLane64(message, len, rr, i + 192); keccakF(S); } else for (i = 0; i < len; i += rr) { S[ 0] ^= toLane(message, len, rr, ww, i + 0 ); S[ 5] ^= toLane(message, len, rr, ww, i + w); S[10] ^= toLane(message, len, rr, ww, i + 2 * w); S[15] ^= toLane(message, len, rr, ww, i + 3 * w); S[20] ^= toLane(message, len, rr, ww, i + 4 * w); S[ 1] ^= toLane(message, len, rr, ww, i + 5 * w); S[ 6] ^= toLane(message, len, rr, ww, i + 6 * w); S[11] ^= toLane(message, len, rr, ww, i + 7 * w); S[16] ^= toLane(message, len, rr, ww, i + 8 * w); S[21] ^= toLane(message, len, rr, ww, i + 9 * w); S[ 2] ^= toLane(message, len, rr, ww, i + 10 * w); S[ 7] ^= toLane(message, len, rr, ww, i + 11 * w); S[12] ^= toLane(message, len, rr, ww, i + 12 * w); S[17] ^= toLane(message, len, rr, ww, i + 13 * w); S[22] ^= toLane(message, len, rr, ww, i + 14 * w); S[ 3] ^= toLane(message, len, rr, ww, i + 15 * w); S[ 8] ^= toLane(message, len, rr, ww, i + 16 * w); S[13] ^= toLane(message, len, rr, ww, i + 17 * w); S[18] ^= toLane(message, len, rr, ww, i + 18 * w); S[23] ^= toLane(message, len, rr, ww, i + 19 * w); S[ 4] ^= toLane(message, len, rr, ww, i + 20 * w); S[ 9] ^= toLane(message, len, rr, ww, i + 21 * w); S[14] ^= toLane(message, len, rr, ww, i + 22 * w); S[19] ^= toLane(message, len, rr, ww, i + 23 * w); S[24] ^= toLane(message, len, rr, ww, i + 24 * w); keccakF(S); } free(message); /* Squeezing phase */ olen = n; ni = min(25, rr); while (olen > 0) { i = 0; while ((i < ni) && (j < nn)) { llong v = S[(i % 5) * 5 + i / 5]; for (_ = 0; _ < ww; _++) { if (j < nn) { rc[ptr] = (byte)v; ptr += 1; } v >>= 8; j += 1; } i += 1; } olen -= r; if (olen > 0) keccakF(S); } return rc; }