/** * sha3sum – SHA-3 (Keccak) checksum calculator * * Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "sha3.h" #if __x86_64__ || __ppc64__ #define llong long int #else #define llong long long int #endif #define null 0 #define byte char #define boolean long #define true 1 #define false 0 /** * Round contants */ static const llong RC[] = { 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L, 0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L, 0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL, 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L, 0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL, 0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L}; /** * Keccak-f round temporary */ static llong B[25]; /** * Keccak-f round temporary */ static llong C[5]; /** * The bitrate */ static long r = 0; /** * The capacity */ static long c = 0; /** * The output size */ static long n = 0; /** * The state size */ static long b = 0; /** * The word size */ static long w = 0; /** * The word mask */ static llong wmod = 0; /** * ℓ, the binary logarithm of the word size */ static long l = 0; /** * 12 + 2ℓ, the number of rounds */ static long nr = 0; /** * The current state */ static llong* S = null; /** * Left over water to fill the sponge with at next update */ static byte* M = null; /** * Pointer for {@link #M} */ static long mptr = 0; /** * Size of {@link #M} */ static long mlen = 0; /** * Gets the smallest, in value, of the arguments * * @param X The first candidate * @param Y The second candidate * @return The lowest candidate */ #define min(X, Y) ((X) < (Y) ? (X) : (Y)) /** * Copy an array segment into an array in start to end order * * @param src The source array * @param soff The source array offset * @param dest The destination array * @param doff The destination array offset * @param length The number of elements to copy */ inline void arraycopy(byte* src, long soff, byte* dest, long doff, long length) { long i; src += soff; dest += doff; #define __(X) dest[X] = src[X] #define __0 *dest = *src #define __1 __(0x01) #define __2 __(0x02); __(0x03) #define __3 __(0x04); __(0x05); __(0x06); __(0x07) #define __4 __(0x08); __(0x09); __(0x0A); __(0x0B); __(0x0C); __(0x0D); __(0x0E); __(0x0F) #define __5 __(0x10); __(0x11); __(0x12); __(0x13); __(0x14); __(0x15); __(0x16); __(0x17); __(0x18); __(0x19); __(0x1A); __(0x1B); __(0x1C); __(0x1D); __(0x1E); __(0x1F) #define __6 __(0x20); __(0x21); __(0x22); __(0x23); __(0x24); __(0x25); __(0x26); __(0x27); __(0x28); __(0x29); __(0x2A); __(0x2B); __(0x2C); __(0x2D); __(0x2E); __(0x2F); \ __(0x30); __(0x31); __(0x32); __(0x33); __(0x34); __(0x35); __(0x36); __(0x37); __(0x38); __(0x39); __(0x3A); __(0x3B); __(0x3C); __(0x3D); __(0x3E); __(0x3F) #define __7 __(0x40); __(0x41); __(0x42); __(0x43); __(0x44); __(0x45); __(0x46); __(0x47); __(0x48); __(0x49); __(0x4A); __(0x4B); __(0x4C); __(0x4D); __(0x4E); __(0x4F); \ __(0x50); __(0x51); __(0x52); __(0x53); __(0x54); __(0x55); __(0x56); __(0x57); __(0x58); __(0x59); __(0x5A); __(0x5B); __(0x5C); __(0x5D); __(0x5E); __(0x5F); \ __(0x60); __(0x61); __(0x62); __(0x63); __(0x64); __(0x65); __(0x66); __(0x67); __(0x68); __(0x69); __(0x6A); __(0x6B); __(0x6C); __(0x6D); __(0x6E); __(0x6F); \ __(0x70); __(0x71); __(0x72); __(0x73); __(0x74); __(0x75); __(0x76); __(0x77); __(0x78); __(0x79); __(0x7A); __(0x7B); __(0x7C); __(0x7D); __(0x7E); __(0x7F) #define __8 __(0x80); __(0x81); __(0x82); __(0x83); __(0x84); __(0x85); __(0x86); __(0x87); __(0x88); __(0x89); __(0x8A); __(0x8B); __(0x8C); __(0x8D); __(0x8E); __(0x8F); \ __(0x90); __(0x91); __(0x92); __(0x93); __(0x94); __(0x95); __(0x96); __(0x97); __(0x98); __(0x99); __(0x9A); __(0x9B); __(0x9C); __(0x9D); __(0x9E); __(0x9F); \ __(0xA0); __(0xA1); __(0xA2); __(0xA3); __(0xA4); __(0xA5); __(0xA6); __(0xA7); __(0xA8); __(0xA9); __(0xAA); __(0xAB); __(0xAC); __(0xAD); __(0xAE); __(0xAF); \ __(0xB0); __(0xB1); __(0xB2); __(0xB3); __(0xB4); __(0xB5); __(0xB6); __(0xB7); __(0xB8); __(0xB9); __(0xBA); __(0xBB); __(0xBC); __(0xBD); __(0xBE); __(0xBF); \ __(0xC0); __(0xC1); __(0xC2); __(0xC3); __(0xC4); __(0xC5); __(0xC6); __(0xC7); __(0xC8); __(0xC9); __(0xCA); __(0xCB); __(0xCC); __(0xCD); __(0xCE); __(0xCF); \ __(0xD0); __(0xD1); __(0xD2); __(0xD3); __(0xD4); __(0xD5); __(0xD6); __(0xD7); __(0xD8); __(0xD9); __(0xDA); __(0xDB); __(0xDC); __(0xDD); __(0xDE); __(0xDF); \ __(0xE0); __(0xE1); __(0xE2); __(0xE3); __(0xE4); __(0xE5); __(0xE6); __(0xE7); __(0xE8); __(0xE9); __(0xEA); __(0xEB); __(0xEC); __(0xED); __(0xEE); __(0xEF); \ __(0xF0); __(0xF1); __(0xF2); __(0xF3); __(0xF4); __(0xF5); __(0xF6); __(0xF7); __(0xF8); __(0xF9); __(0xFA); __(0xFB); __(0xFC); __(0xFD); __(0xFE); __(0xFF) if ((length & 15)) { if ((length & 1)) { __0; src += 1; dest += 1; } if ((length & 2)) { __0; __1; src += 2; dest += 2; } if ((length & 4)) { __0; __1; __2; src += 4; dest += 4; } if ((length & 8)) { __0; __1; __2; __3; src += 8; dest += 8; } } if ((length & 240)) { if ((length & 16)) { __0; __1; __2; __3; __4; src += 16; dest += 16; } if ((length & 32)) { __0; __1; __2; __3; __4; __5; src += 32; dest += 32; } if ((length & 64)) { __0; __1; __2; __3; __4; __5; __6; src += 64; dest += 64; } if ((length & 128)) { __0; __1; __2; __3; __4; __5; __6; __7; src += 128; dest += 128; } } length &= ~255; for (i = 0; i < length; i += 256) { __0; __1; __2; __3; __4; __5; __6; __7; __8; src += 256; dest += 256; } #undef __8 #undef __7 #undef __6 #undef __5 #undef __4 #undef __3 #undef __2 #undef __1 #undef __0 #undef __ } /** * Copy an array segment into an array in end to start order * * @param src The source array * @param soff The source array offset * @param dest The destination array * @param doff The destination array offset * @param length The number of elements to copy */ inline void revarraycopy(byte* src, long soff, byte* dest, long doff, long length) { long copyi; for (copyi = length - 1; copyi >= 0; copyi--) dest[copyi + doff] = src[copyi + soff]; } /** * Rotate a word * * @param X:llong The value to rotate * @param N:long Rotation steps, may not be 0 * @return :llong The value rotated */ #define rotate(X, N) ((((X) >> (w - ((N) % w))) + ((X) << ((N) % w))) & wmod) /** * Rotate a 64-bit word * * @param X:llong The value to rotate * @param N:long Rotation steps, may not be 0 * @return :llong The value rotated */ #define rotate64(X, N) ((llong)((unsigned llong)(X) >> (64 - (N))) + ((X) << (N))) /** * Binary logarithm * * @param x The value of which to calculate the binary logarithm * @return The binary logarithm */ static long lb(long x) { long rc = 0; if ((x & 0xFF00) != 0) { rc += 8; x >>= 8; } if ((x & 0x00F0) != 0) { rc += 4; x >>= 4; } if ((x & 0x000C) != 0) { rc += 2; x >>= 2; } if ((x & 0x0002) != 0) rc += 1; return rc; } /** * Perform one round of computation * * @param A The current state * @param rc Round constant */ static void keccakFRound(llong* A, llong rc) { llong da, db, dc, dd, de; /* θ step (step 1 and 2 of 3) */ #define __C(I, J0, J1, J2, J3, J4) C[I] = (A[J0] ^ A[J1]) ^ (A[J2] ^ A[J3]) ^ A[J4] __C(0, 0, 1, 2, 3, 4); __C(1, 5, 6, 7, 8, 9); __C(2, 10, 11, 12, 13, 14); __C(3, 15, 16, 17, 18, 19); __C(4, 20, 21, 22, 23, 24); #undef __C da = C[4] ^ rotate64(C[1], 1); dd = C[2] ^ rotate64(C[4], 1); db = C[0] ^ rotate64(C[2], 1); de = C[3] ^ rotate64(C[0], 1); dc = C[1] ^ rotate64(C[3], 1); if (w == 64) { /* ρ and π steps, with last two part of θ */ #define __B(Bi, Ai, Dv, R) B[Bi] = rotate64(A[Ai] ^ Dv, R) B[0] = A[0] ^ da; __B( 1, 15, dd, 28); __B( 2, 5, db, 1); __B( 3, 20, de, 27); __B( 4, 10, dc, 62); __B( 5, 6, db, 44); __B( 6, 21, de, 20); __B( 7, 11, dc, 6); __B( 8, 1, da, 36); __B( 9, 16, dd, 55); __B(10, 12, dc, 43); __B(11, 2, da, 3); __B(12, 17, dd, 25); __B(13, 7, db, 10); __B(14, 22, de, 39); __B(15, 18, dd, 21); __B(16, 8, db, 45); __B(17, 23, de, 8); __B(18, 13, dc, 15); __B(19, 3, da, 41); __B(20, 24, de, 14); __B(21, 14, dc, 61); __B(22, 4, da, 18); __B(23, 19, dd, 56); __B(24, 9, db, 2); #undef __B } else { /* ρ and π steps, with last two part of θ */ #define __B(Bi, Ai, Dv, R) B[Bi] = rotate(A[Ai] ^ Dv, R) B[0] = A[0] ^ da; __B( 1, 15, dd, 28); __B( 2, 5, db, 1); __B( 3, 20, de, 27); __B( 4, 10, dc, 62); __B( 5, 6, db, 44); __B( 6, 21, de, 20); __B( 7, 11, dc, 6); __B( 8, 1, da, 36); __B( 9, 16, dd, 55); __B(10, 12, dc, 43); __B(11, 2, da, 3); __B(12, 17, dd, 25); __B(13, 7, db, 10); __B(14, 22, de, 39); __B(15, 18, dd, 21); __B(16, 8, db, 45); __B(17, 23, de, 8); __B(18, 13, dc, 15); __B(19, 3, da, 41); __B(20, 24, de, 14); __B(21, 14, dc, 61); __B(22, 4, da, 18); __B(23, 19, dd, 56); __B(24, 9, db, 2); #undef __B } /* ξ step */ #define __A(X, X5, X10) A[X] = B[X] ^ ((~(B[X5])) & B[X10]) __A( 0, 5, 10); __A( 1, 6, 11); __A( 2, 7, 12); __A( 3, 8, 13); __A( 4, 9, 14); __A( 5, 10, 15); __A( 6, 11, 16); __A( 7, 12, 17); __A( 8, 13, 18); __A( 9, 14, 19); __A(10, 15, 20); __A(11, 16, 21); __A(12, 17, 22); __A(13, 18, 23); __A(14, 19, 24); __A(15, 20, 0); __A(16, 21, 1); __A(17, 22, 2); __A(18, 23, 3); __A(19, 24, 4); __A(20, 0, 5); __A(21, 1, 6); __A(22, 2, 7); __A(23, 3, 8); __A(24, 4, 9); #undef __A /* ι step */ A[0] ^= rc; } /** * Perform Keccak-f function * * @param A The current state */ static void keccakF(llong* A) { long i; if (nr == 24) { keccakFRound(A, 0x0000000000000001); keccakFRound(A, 0x0000000000008082); keccakFRound(A, 0x800000000000808A); keccakFRound(A, 0x8000000080008000); keccakFRound(A, 0x000000000000808B); keccakFRound(A, 0x0000000080000001); keccakFRound(A, 0x8000000080008081); keccakFRound(A, 0x8000000000008009); keccakFRound(A, 0x000000000000008A); keccakFRound(A, 0x0000000000000088); keccakFRound(A, 0x0000000080008009); keccakFRound(A, 0x000000008000000A); keccakFRound(A, 0x000000008000808B); keccakFRound(A, 0x800000000000008B); keccakFRound(A, 0x8000000000008089); keccakFRound(A, 0x8000000000008003); keccakFRound(A, 0x8000000000008002); keccakFRound(A, 0x8000000000000080); keccakFRound(A, 0x000000000000800A); keccakFRound(A, 0x800000008000000A); keccakFRound(A, 0x8000000080008081); keccakFRound(A, 0x8000000000008080); keccakFRound(A, 0x0000000080000001); keccakFRound(A, 0x8000000080008008); } else for (i = 0; i < nr; i++) keccakFRound(A, RC[i] & wmod); } /** * Convert a chunk of byte:s to a word * * @param message The message * @param msglen The length of the message * @param rr Bitrate in bytes * @param ww Word size in bytes * @param off The offset in the message * @return Lane */ inline llong toLane(byte* message, long msglen, long rr, long ww, long off) { llong rc = 0; long n = min(msglen, rr), i; for (i = off + ww - 1; i >= off; i--) rc = (rc << 8) | ((i < n) ? (llong)(message[i] & 255) : 0L); return rc; } /** * Convert a chunk of byte:s to a 64-bit word * * @param message The message * @param msglen The length of the message * @param rr Bitrate in bytes * @param off The offset in the message * @return Lane */ inline llong toLane64(byte* message, long msglen, long rr, long off) { long n = min(msglen, rr); return ((off + 7 < n) ? ((llong)(message[off + 7] & 255) << 56) : 0L) | ((off + 6 < n) ? ((llong)(message[off + 6] & 255) << 48) : 0L) | ((off + 5 < n) ? ((llong)(message[off + 5] & 255) << 40) : 0L) | ((off + 4 < n) ? ((llong)(message[off + 4] & 255) << 32) : 0L) | ((off + 3 < n) ? ((llong)(message[off + 3] & 255) << 24) : 0L) | ((off + 2 < n) ? ((llong)(message[off + 2] & 255) << 16) : 0L) | ((off + 1 < n) ? ((llong)(message[off + 1] & 255) << 8) : 0L) | ((off < n) ? ((llong)(message[off ] & 255) ) : 0L); } /** * pad 10*1 * * @param msg The message to pad * @param len The length of the message * @param r The bitrate * @param outlen The length of the padded message (out parameter) * @return The message padded */ inline byte* pad10star1(byte* msg, long len, long r, long* outlen) { byte* message; long nrf = (len <<= 3) >> 3; long nbrf = len & 7; long ll = len % r; long i; byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf))); if ((r - 8 <= ll) && (ll <= r - 2)) { message = (byte*)malloc(len = nrf + 1); message[nrf] = (byte)(b ^ 128); } else { char* M; long N; len = (nrf + 1) << 3; len = ((len - (len % r) + (r - 8)) >> 3) + 1; message = (byte*)malloc(len); message[nrf] = b; N = len - nrf - 1; M = message + nrf + 1; #define __(X) M[X] = 0 #define __0 *M = 0 #define __1 __(0x01) #define __2 __(0x02); __(0x03) #define __3 __(0x04); __(0x05); __(0x06); __(0x07) #define __4 __(0x08); __(0x09); __(0x0A); __(0x0B); __(0x0C); __(0x0D); __(0x0E); __(0x0F) #define __5 __(0x10); __(0x11); __(0x12); __(0x13); __(0x14); __(0x15); __(0x16); __(0x17); __(0x18); __(0x19); __(0x1A); __(0x1B); __(0x1C); __(0x1D); __(0x1E); __(0x1F) #define __6 __(0x20); __(0x21); __(0x22); __(0x23); __(0x24); __(0x25); __(0x26); __(0x27); __(0x28); __(0x29); __(0x2A); __(0x2B); __(0x2C); __(0x2D); __(0x2E); __(0x2F); \ __(0x30); __(0x31); __(0x32); __(0x33); __(0x34); __(0x35); __(0x36); __(0x37); __(0x38); __(0x39); __(0x3A); __(0x3B); __(0x3C); __(0x3D); __(0x3E); __(0x3F) #define __7 __(0x40); __(0x41); __(0x42); __(0x43); __(0x44); __(0x45); __(0x46); __(0x47); __(0x48); __(0x49); __(0x4A); __(0x4B); __(0x4C); __(0x4D); __(0x4E); __(0x4F); \ __(0x50); __(0x51); __(0x52); __(0x53); __(0x54); __(0x55); __(0x56); __(0x57); __(0x58); __(0x59); __(0x5A); __(0x5B); __(0x5C); __(0x5D); __(0x5E); __(0x5F); \ __(0x60); __(0x61); __(0x62); __(0x63); __(0x64); __(0x65); __(0x66); __(0x67); __(0x68); __(0x69); __(0x6A); __(0x6B); __(0x6C); __(0x6D); __(0x6E); __(0x6F); \ __(0x70); __(0x71); __(0x72); __(0x73); __(0x74); __(0x75); __(0x76); __(0x77); __(0x78); __(0x79); __(0x7A); __(0x7B); __(0x7C); __(0x7D); __(0x7E); __(0x7F) #define __8 __(0x80); __(0x81); __(0x82); __(0x83); __(0x84); __(0x85); __(0x86); __(0x87); __(0x88); __(0x89); __(0x8A); __(0x8B); __(0x8C); __(0x8D); __(0x8E); __(0x8F); \ __(0x90); __(0x91); __(0x92); __(0x93); __(0x94); __(0x95); __(0x96); __(0x97); __(0x98); __(0x99); __(0x9A); __(0x9B); __(0x9C); __(0x9D); __(0x9E); __(0x9F); \ __(0xA0); __(0xA1); __(0xA2); __(0xA3); __(0xA4); __(0xA5); __(0xA6); __(0xA7); __(0xA8); __(0xA9); __(0xAA); __(0xAB); __(0xAC); __(0xAD); __(0xAE); __(0xAF); \ __(0xB0); __(0xB1); __(0xB2); __(0xB3); __(0xB4); __(0xB5); __(0xB6); __(0xB7); __(0xB8); __(0xB9); __(0xBA); __(0xBB); __(0xBC); __(0xBD); __(0xBE); __(0xBF); \ __(0xC0); __(0xC1); __(0xC2); __(0xC3); __(0xC4); __(0xC5); __(0xC6); __(0xC7); __(0xC8); __(0xC9); __(0xCA); __(0xCB); __(0xCC); __(0xCD); __(0xCE); __(0xCF); \ __(0xD0); __(0xD1); __(0xD2); __(0xD3); __(0xD4); __(0xD5); __(0xD6); __(0xD7); __(0xD8); __(0xD9); __(0xDA); __(0xDB); __(0xDC); __(0xDD); __(0xDE); __(0xDF); \ __(0xE0); __(0xE1); __(0xE2); __(0xE3); __(0xE4); __(0xE5); __(0xE6); __(0xE7); __(0xE8); __(0xE9); __(0xEA); __(0xEB); __(0xEC); __(0xED); __(0xEE); __(0xEF); \ __(0xF0); __(0xF1); __(0xF2); __(0xF3); __(0xF4); __(0xF5); __(0xF6); __(0xF7); __(0xF8); __(0xF9); __(0xFA); __(0xFB); __(0xFC); __(0xFD); __(0xFE); __(0xFF) if ((N & 15)) { if ((N & 1)) { __0; M += 1; } if ((N & 2)) { __0; __1; M += 2; } if ((N & 4)) { __0; __1; __2; M += 4; } if ((N & 8)) { __0; __1; __2; __3; M += 8; } } if ((N & 240)) { if ((N & 16)) { __0; __1; __2; __3; __4; M += 16; } if ((N & 32)) { __0; __1; __2; __3; __4; __5; M += 32; } if ((N & 64)) { __0; __1; __2; __3; __4; __5; __6; M += 64; } if ((N & 128)) { __0; __1; __2; __3; __4; __5; __6; __7; M += 128; } } N &= ~255; for (i = 0; i < N; i += 256) { __0; __1; __2; __3; __4; __5; __6; __7; __8; M += 256; } #undef __8 #undef __7 #undef __6 #undef __5 #undef __4 #undef __3 #undef __2 #undef __1 #undef __0 #undef __ message[len - 1] = -128; } arraycopy(msg, 0, message, 0, nrf); *outlen = len; return message; } /** * Initialise Keccak sponge * * @param bitrate The bitrate * @param capacity The capacity * @param output The output size */ extern void initialise(long bitrate, long capacity, long output) { long i; r = bitrate; n = output; c = capacity; b = r + c; w = b / 25; l = lb(w); nr = 12 + (l << 1); if (w == 64) wmod = -1; else { wmod = 1; wmod <<= w; wmod--; } S = (llong*)malloc(25 * sizeof(llong)); M = (byte*)malloc(mlen = (r * b) >> 2); mptr = 0; for (i = 0; i < 25; i++) *(S + i) = 0; } /** * Dispose of the Keccak sponge */ extern void dispose() { if (S != null) { free(S); S = null; } if (M != null) { free(M); M = null; } } /** * Absorb the more of the message message to the Keccak sponge * * @param msg The partial message * @param msglen The length of the partial message */ extern void update(byte* msg, long msglen) { long rr = r >> 3; long ww = w >> 3; long i, len; byte* message; if (mptr + msglen > mlen) { byte* buf = (byte*)malloc(mlen = (mlen + msglen) << 1); arraycopy(M, 0, buf, 0, mptr); free(M); M = buf; } arraycopy(msg, 0, M, mptr, msglen); len = mptr += msglen; len -= len % ((r * b) >> 3); message = (byte*)malloc(len); arraycopy(M, 0, message, 0, len); mptr -= len; revarraycopy(M, len, M, 0, mptr); /* Absorbing phase */ if (ww == 8) for (i = 0; i < len; i += rr) { #define __S(Si, OFF) S[Si] ^= toLane64(message, len, rr, i + OFF) __S( 0, 0); __S( 5, 8); __S(10, 16); __S(15, 24); __S(20, 32); __S( 1, 40); __S( 6, 48); __S(11, 56); __S(16, 64); __S(21, 72); __S( 2, 80); __S( 7, 88); __S(12, 96); __S(17, 104); __S(22, 112); __S( 3, 120); __S( 8, 128); __S(13, 136); __S(18, 144); __S(23, 152); __S( 4, 160); __S( 9, 168); __S(14, 176); __S(19, 184); __S(24, 192); #undef __S keccakF(S); } else for (i = 0; i < len; i += rr) { #define __S(Si, OFF) S[Si] ^= toLane(message, len, rr, ww, i + OFF * w) __S( 0, 0); __S( 5, 1); __S(10, 2); __S(15, 3); __S(20, 4); __S( 1, 5); __S( 6, 6); __S(11, 7); __S(16, 8); __S(21, 9); __S( 2, 10); __S( 7, 11); __S(12, 12); __S(17, 13); __S(22, 14); __S( 3, 15); __S( 8, 16); __S(13, 17); __S(18, 18); __S(23, 19); __S( 4, 20); __S( 9, 21); __S(14, 22); __S(19, 23); __S(24, 24); #undef __S keccakF(S); } free(message); } /** * Absorb the last part of the message and squeeze the Keccak sponge * * @param msg The rest of the message, may be {@code null} * @param msglen The length of the partial message */ extern byte* digest(byte* msg, long msglen) { byte* message; byte* rc; long rr = r >> 3, len; long nn = (n + 7) >> 3, olen; long ww = w >> 3, ni; long i, j = 0, ptr = 0, _; if ((msg == null) || (msglen == 0)) message = pad10star1(M, mptr, r, &len); else { if (mptr + msglen > mlen) { byte* buf = (byte*)malloc(mlen += msglen); arraycopy(M, 0, buf, 0, mptr); free(M); M = buf; } arraycopy(msg, 0, M, mptr, msglen); message = pad10star1(M, mptr + msglen, r, &len); } free(M); M = null; rc = (byte*)malloc((n + 7) >> 3); /* Absorbing phase */ if (ww == 8) for (i = 0; i < len; i += rr) { #define __S(Si, OFF) S[Si] ^= toLane64(message, len, rr, i + OFF) __S( 0, 0); __S( 5, 8); __S(10, 16); __S(15, 24); __S(20, 32); __S( 1, 40); __S( 6, 48); __S(11, 56); __S(16, 64); __S(21, 72); __S( 2, 80); __S( 7, 88); __S(12, 96); __S(17, 104); __S(22, 112); __S( 3, 120); __S( 8, 128); __S(13, 136); __S(18, 144); __S(23, 152); __S( 4, 160); __S( 9, 168); __S(14, 176); __S(19, 184); __S(24, 192); #undef __S keccakF(S); } else for (i = 0; i < len; i += rr) { #define __S(Si, OFF) S[Si] ^= toLane(message, len, rr, ww, i + OFF * w) __S( 0, 0); __S( 5, 1); __S(10, 2); __S(15, 3); __S(20, 4); __S( 1, 5); __S( 6, 6); __S(11, 7); __S(16, 8); __S(21, 9); __S( 2, 10); __S( 7, 11); __S(12, 12); __S(17, 13); __S(22, 14); __S( 3, 15); __S( 8, 16); __S(13, 17); __S(18, 18); __S(23, 19); __S( 4, 20); __S( 9, 21); __S(14, 22); __S(19, 23); __S(24, 24); #undef __S keccakF(S); } free(message); /* Squeezing phase */ olen = n; ni = min(25, rr); while (olen > 0) { i = 0; while ((i < ni) && (j < nn)) { llong v = S[(i % 5) * 5 + i / 5]; for (_ = 0; _ < ww; _++) { if (j < nn) rc[ptr++] = (byte)v; v >>= 8; j += 1; } i += 1; } olen -= r; if (olen > 0) keccakF(S); } if ((n & 7)) rc[n >> 3] &= (1 << (n & 7)) - 1; return rc; }