aboutsummaryrefslogtreecommitdiffstats
path: root/python2
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--python2/sha3.py668
-rwxr-xr-xpython2/sha3sum.py398
2 files changed, 0 insertions, 1066 deletions
diff --git a/python2/sha3.py b/python2/sha3.py
deleted file mode 100644
index ecc3bc8..0000000
--- a/python2/sha3.py
+++ /dev/null
@@ -1,668 +0,0 @@
-#!/usr/bin/env python2
-# -*- coding: utf-8 -*-
-'''
-sha3sum – SHA-3 (Keccak) checksum calculator
-
-Copyright © 2013, 2014 Mattias Andrée (maandree@member.fsf.org)
-
-This program is free software: you can redistribute it and/or modify
-it under the terms of the GNU Affero General Public License as published by
-the Free Software Foundation, either version 3 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU Affero General Public License for more details.
-
-You should have received a copy of the GNU Affero General Public License
-along with this program. If not, see <http://www.gnu.org/licenses/>.
-'''
-
-class SHA3:
- '''
- SHA-3/Keccak hash algorithm implementation
-
- @author Mattias Andrée (maandree@member.fsf.org)
- '''
-
-
- KECCAK_SUFFIX = ''
- '''
- :str Suffix the message when calculating the Keccak hash sum
- '''
-
- SHA3_SUFFIX = '01'
- '''
- :str Suffix the message when calculating the SHA-3 hash sum
- '''
-
- RawSHAKE_SUFFIX = '11'
- '''
- :str Suffix the message when calculating the RawSHAKE hash sum
- '''
-
- SHAKE_SUFFIX = '1111'
- '''
- :str Suffix the message when calculating the SHAKE hash sum
- '''
-
-
- def __init__(self):
- '''
- Constructor
- '''
-
- self.RC = [0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000,
- 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
- 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A,
- 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003,
- 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A,
- 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008]
- '''
- :list<int> Round contants
- '''
-
- self.B = [0] * 25
- '''
- :list<int> Keccak-f round temporary
- '''
-
- self.C = [0] * 5
- '''
- :list<int> Keccak-f round temporary
- '''
-
-
- (self.r, self.c, self.n, self.b, self.w, self.wmod, self.l, self.nr) = (0, 0, 0, 0, 0, 0, 0, 0)
- '''
- r:int The bitrate
- c:int The capacity
- n:int The output size
- b:int The state size
- w:int The word size
- wmod:int The word mask
- l:int ℓ, the binary logarithm of the word size
- nr:int 12 + 2ℓ, the number of rounds
- '''
-
- self.S = None
- '''
- :list<int> The current state
- '''
-
- self.M = None
- '''
- :bytes Left over water to fill the sponge with at next update
- '''
-
-
-
- def rotate(self, x, n):
- '''
- Rotate a word
-
- @param x:int The value to rotate
- @param n:int Rotation steps
- @return :int The value rotated
- '''
- m = n % self.w
- return ((x >> (self.w - m)) + (x << m)) & self.wmod
-
-
- def rotate64(self, x, n):
- '''
- Rotate a 64-bit word
-
- @param x:int The value to rotate
- @param n:int Rotation steps
- @return :int The value rotated
- '''
- return ((x >> (64 - n)) + (x << n)) & 0xFFFFFFFFFFFFFFFF
-
-
- def lb(self, x):
- '''
- Binary logarithm
-
- @param x:int The value of which to calculate the binary logarithm
- @return :int The binary logarithm
- '''
- rc = 0
- if (x & 0xFF00) != 0: rc += 8 ; x >>= 8
- if (x & 0x00F0) != 0: rc += 4 ; x >>= 4
- if (x & 0x000C) != 0: rc += 2 ; x >>= 2
- if (x & 0x0002) != 0: rc += 1
- return rc
-
-
- def keccakFRound(self, A, rc):
- '''
- Perform one round of computation
-
- @param A:list<int> The current state
- @param rc:int Round constant
- '''
- if self.w == 64:
- # θ step (step 1 and 2 of 3)
- self.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4]
- self.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14]
- db = self.C[0] ^ self.rotate64(self.C[2], 1)
- self.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24]
- dd = self.C[2] ^ self.rotate64(self.C[4], 1)
- self.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9]
- da = self.C[4] ^ self.rotate64(self.C[1], 1)
- self.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19]
- dc = self.C[1] ^ self.rotate64(self.C[3], 1)
- de = self.C[3] ^ self.rotate64(self.C[0], 1)
-
- # ρ and π steps, with last part of θ
- self.B[0] = self.rotate64(A[0] ^ da, 0)
- self.B[1] = self.rotate64(A[15] ^ dd, 28)
- self.B[2] = self.rotate64(A[5] ^ db, 1)
- self.B[3] = self.rotate64(A[20] ^ de, 27)
- self.B[4] = self.rotate64(A[10] ^ dc, 62)
-
- self.B[5] = self.rotate64(A[6] ^ db, 44)
- self.B[6] = self.rotate64(A[21] ^ de, 20)
- self.B[7] = self.rotate64(A[11] ^ dc, 6)
- self.B[8] = self.rotate64(A[1] ^ da, 36)
- self.B[9] = self.rotate64(A[16] ^ dd, 55)
-
- self.B[10] = self.rotate64(A[12] ^ dc, 43)
- self.B[11] = self.rotate64(A[2] ^ da, 3)
- self.B[12] = self.rotate64(A[17] ^ dd, 25)
- self.B[13] = self.rotate64(A[7] ^ db, 10)
- self.B[14] = self.rotate64(A[22] ^ de, 39)
-
- self.B[15] = self.rotate64(A[18] ^ dd, 21)
- self.B[16] = self.rotate64(A[8] ^ db, 45)
- self.B[17] = self.rotate64(A[23] ^ de, 8)
- self.B[18] = self.rotate64(A[13] ^ dc, 15)
- self.B[19] = self.rotate64(A[3] ^ da, 41)
-
- self.B[20] = self.rotate64(A[24] ^ de, 14)
- self.B[21] = self.rotate64(A[14] ^ dc, 61)
- self.B[22] = self.rotate64(A[4] ^ da, 18)
- self.B[23] = self.rotate64(A[19] ^ dd, 56)
- self.B[24] = self.rotate64(A[9] ^ db, 2)
- else:
- # θ step (step 1 and 2 of 3)
- self.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4]
- self.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14]
- db = self.C[0] ^ self.rotate(self.C[2], 1)
- self.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24]
- dd = self.C[2] ^ self.rotate(self.C[4], 1)
- self.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9]
- da = self.C[4] ^ self.rotate(self.C[1], 1)
- self.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19]
- dc = self.C[1] ^ self.rotate(self.C[3], 1)
- de = self.C[3] ^ self.rotate(self.C[0], 1)
-
- # ρ and π steps, with last part of θ
- self.B[0] = self.rotate(A[0] ^ da, 0)
- self.B[1] = self.rotate(A[15] ^ dd, 28)
- self.B[2] = self.rotate(A[5] ^ db, 1)
- self.B[3] = self.rotate(A[20] ^ de, 27)
- self.B[4] = self.rotate(A[10] ^ dc, 62)
-
- self.B[5] = self.rotate(A[6] ^ db, 44)
- self.B[6] = self.rotate(A[21] ^ de, 20)
- self.B[7] = self.rotate(A[11] ^ dc, 6)
- self.B[8] = self.rotate(A[1] ^ da, 36)
- self.B[9] = self.rotate(A[16] ^ dd, 55)
-
- self.B[10] = self.rotate(A[12] ^ dc, 43)
- self.B[11] = self.rotate(A[2] ^ da, 3)
- self.B[12] = self.rotate(A[17] ^ dd, 25)
- self.B[13] = self.rotate(A[7] ^ db, 10)
- self.B[14] = self.rotate(A[22] ^ de, 39)
-
- self.B[15] = self.rotate(A[18] ^ dd, 21)
- self.B[16] = self.rotate(A[8] ^ db, 45)
- self.B[17] = self.rotate(A[23] ^ de, 8)
- self.B[18] = self.rotate(A[13] ^ dc, 15)
- self.B[19] = self.rotate(A[3] ^ da, 41)
-
- self.B[20] = self.rotate(A[24] ^ de, 14)
- self.B[21] = self.rotate(A[14] ^ dc, 61)
- self.B[22] = self.rotate(A[4] ^ da, 18)
- self.B[23] = self.rotate(A[19] ^ dd, 56)
- self.B[24] = self.rotate(A[9] ^ db, 2)
-
- # ξ step
- A[0] = self.B[0] ^ ((~(self.B[5])) & self.B[10])
- A[1] = self.B[1] ^ ((~(self.B[6])) & self.B[11])
- A[2] = self.B[2] ^ ((~(self.B[7])) & self.B[12])
- A[3] = self.B[3] ^ ((~(self.B[8])) & self.B[13])
- A[4] = self.B[4] ^ ((~(self.B[9])) & self.B[14])
-
- A[5] = self.B[5] ^ ((~(self.B[10])) & self.B[15])
- A[6] = self.B[6] ^ ((~(self.B[11])) & self.B[16])
- A[7] = self.B[7] ^ ((~(self.B[12])) & self.B[17])
- A[8] = self.B[8] ^ ((~(self.B[13])) & self.B[18])
- A[9] = self.B[9] ^ ((~(self.B[14])) & self.B[19])
-
- A[10] = self.B[10] ^ ((~(self.B[15])) & self.B[20])
- A[11] = self.B[11] ^ ((~(self.B[16])) & self.B[21])
- A[12] = self.B[12] ^ ((~(self.B[17])) & self.B[22])
- A[13] = self.B[13] ^ ((~(self.B[18])) & self.B[23])
- A[14] = self.B[14] ^ ((~(self.B[19])) & self.B[24])
-
- A[15] = self.B[15] ^ ((~(self.B[20])) & self.B[0])
- A[16] = self.B[16] ^ ((~(self.B[21])) & self.B[1])
- A[17] = self.B[17] ^ ((~(self.B[22])) & self.B[2])
- A[18] = self.B[18] ^ ((~(self.B[23])) & self.B[3])
- A[19] = self.B[19] ^ ((~(self.B[24])) & self.B[4])
-
- A[20] = self.B[20] ^ ((~(self.B[0])) & self.B[5])
- A[21] = self.B[21] ^ ((~(self.B[1])) & self.B[6])
- A[22] = self.B[22] ^ ((~(self.B[2])) & self.B[7])
- A[23] = self.B[23] ^ ((~(self.B[3])) & self.B[8])
- A[24] = self.B[24] ^ ((~(self.B[4])) & self.B[9])
-
- # ι step
- A[0] ^= rc
-
-
- def keccakF(self, A):
- '''
- Perform Keccak-f function
-
- @param A:list<int> The current state
- '''
- if (self.nr == 24):
- self.keccakFRound(A, 0x0000000000000001)
- self.keccakFRound(A, 0x0000000000008082)
- self.keccakFRound(A, 0x800000000000808A)
- self.keccakFRound(A, 0x8000000080008000)
- self.keccakFRound(A, 0x000000000000808B)
- self.keccakFRound(A, 0x0000000080000001)
- self.keccakFRound(A, 0x8000000080008081)
- self.keccakFRound(A, 0x8000000000008009)
- self.keccakFRound(A, 0x000000000000008A)
- self.keccakFRound(A, 0x0000000000000088)
- self.keccakFRound(A, 0x0000000080008009)
- self.keccakFRound(A, 0x000000008000000A)
- self.keccakFRound(A, 0x000000008000808B)
- self.keccakFRound(A, 0x800000000000008B)
- self.keccakFRound(A, 0x8000000000008089)
- self.keccakFRound(A, 0x8000000000008003)
- self.keccakFRound(A, 0x8000000000008002)
- self.keccakFRound(A, 0x8000000000000080)
- self.keccakFRound(A, 0x000000000000800A)
- self.keccakFRound(A, 0x800000008000000A)
- self.keccakFRound(A, 0x8000000080008081)
- self.keccakFRound(A, 0x8000000000008080)
- self.keccakFRound(A, 0x0000000080000001)
- self.keccakFRound(A, 0x8000000080008008)
- else:
- for i in range(self.nr):
- self.keccakFRound(A, self.RC[i] & self.wmod)
-
-
- def toLane(self, message, n, ww, off):
- '''
- Convert a chunk of byte:s to a word
-
- @param message:bytes The message
- @param n:int `min(len(message), rr)`
- rr:int Bitrate in bytes
- @param ww:int Word size in bytes
- @param off:int The offset in the message
- @return :int Lane
- '''
- rc = 0
- i = off + ww - 1
- while i >= off:
- rc = (rc << 8) | (message[i] if (i < n) else 0)
- i -= 1
- return rc
-
-
- def toLane64(self, message, n, off):
- '''
- Convert a chunk of byte:s to a 64-bit word
-
- @param message:bytes The message
- @param n:int `min(len(message), rr)`
- rr:int Bitrate in bytes
- @param off:int The offset in the message
- @return :int Lane
- '''
- return ((message[off + 7] << 56) if (off + 7 < n) else 0) | \
- ((message[off + 6] << 48) if (off + 6 < n) else 0) | \
- ((message[off + 5] << 40) if (off + 5 < n) else 0) | \
- ((message[off + 4] << 32) if (off + 4 < n) else 0) | \
- ((message[off + 3] << 24) if (off + 3 < n) else 0) | \
- ((message[off + 2] << 16) if (off + 2 < n) else 0) | \
- ((message[off + 1] << 8) if (off + 1 < n) else 0) | \
- ((message[off]) if (off < n) else 0)
-
-
- def pad10star1(self, msg, r, bits):
- '''
- pad 10*1
-
- @param msg:bytes The message to pad
- @param r:int The bitrate
- @param bits:int The number of bits in the end of the message that does not make a whole byte
- @return :bytes The message padded
- '''
- nnn = ((len(msg) - (bits + 7) // 8) << 3) + bits
-
- nrf = nnn >> 3
- nbrf = nnn & 7
- ll = nnn % r
-
- bbbb = 1 if nbrf == 0 else (msg[nrf] | (1 << nbrf))
-
- message = None
- if ((r - 8 <= ll) and (ll <= r - 2)):
- message = [bbbb ^ 128]
- else:
- nnn = (nrf + 1) << 3
- nnn = ((nnn - (nnn % r) + (r - 8)) >> 3) + 1
- message = [0] * (nnn - nrf)
- message[0] = bbbb
- nnn -= nrf
- message[nnn - 1] = 0x80
-
- return msg[:nrf] + message
-
-
- def initialise(self, r, c, n):
- '''
- Initialise Keccak sponge
-
- @param r:int The bitrate
- @param c:int The capacity
- @param n:int The output size
- '''
- self.r = r
- self.c = c
- self.n = n
- self.b = r + c
- self.w = self.b // 25
- self.l = self.lb(self.w)
- self.nr = 12 + (self.l << 1)
- self.wmod = (1 << self.w) - 1
- self.S = [0] * 25
- self.M = []
-
-
- def update(self, msg, msglen = None):
- '''
- Absorb the more of the message message to the Keccak sponge
-
- @param msg:bytes The partial message
- @param msglen:int The length of the partial message in whole bytes
- '''
- if msglen is not None:
- msg = msg[:msglen]
-
- rr = self.r >> 3
- ww = self.w >> 3
-
- self.M += msg
- nnn = len(self.M)
- nnn -= nnn % ((self.r * self.b) >> 3)
- message = self.M[:nnn]
- self.M = self.M[nnn:]
-
- # Absorbing phase
- if ww == 8:
- for i in range(0, nnn, rr):
- n = min(len(message), rr)
- self.S[ 0] ^= self.toLane64(message, n, 0)
- self.S[ 5] ^= self.toLane64(message, n, 8)
- self.S[10] ^= self.toLane64(message, n, 16)
- self.S[15] ^= self.toLane64(message, n, 24)
- self.S[20] ^= self.toLane64(message, n, 32)
- self.S[ 1] ^= self.toLane64(message, n, 40)
- self.S[ 6] ^= self.toLane64(message, n, 48)
- self.S[11] ^= self.toLane64(message, n, 56)
- self.S[16] ^= self.toLane64(message, n, 64)
- self.S[21] ^= self.toLane64(message, n, 72)
- self.S[ 2] ^= self.toLane64(message, n, 80)
- self.S[ 7] ^= self.toLane64(message, n, 88)
- self.S[12] ^= self.toLane64(message, n, 96)
- self.S[17] ^= self.toLane64(message, n, 104)
- self.S[22] ^= self.toLane64(message, n, 112)
- self.S[ 3] ^= self.toLane64(message, n, 120)
- self.S[ 8] ^= self.toLane64(message, n, 128)
- self.S[13] ^= self.toLane64(message, n, 136)
- self.S[18] ^= self.toLane64(message, n, 144)
- self.S[23] ^= self.toLane64(message, n, 152)
- self.S[ 4] ^= self.toLane64(message, n, 160)
- self.S[ 9] ^= self.toLane64(message, n, 168)
- self.S[14] ^= self.toLane64(message, n, 176)
- self.S[19] ^= self.toLane64(message, n, 184)
- self.S[24] ^= self.toLane64(message, n, 192)
- self.keccakF(self.S)
- message = message[rr:]
- else:
- for i in range(0, nnn, rr):
- n = min(len(message), rr)
- self.S[ 0] ^= self.toLane(message, n, ww, 0)
- self.S[ 5] ^= self.toLane(message, n, ww, ww)
- self.S[10] ^= self.toLane(message, n, ww, 2 * ww)
- self.S[15] ^= self.toLane(message, n, ww, 3 * ww)
- self.S[20] ^= self.toLane(message, n, ww, 4 * ww)
- self.S[ 1] ^= self.toLane(message, n, ww, 5 * ww)
- self.S[ 6] ^= self.toLane(message, n, ww, 6 * ww)
- self.S[11] ^= self.toLane(message, n, ww, 7 * ww)
- self.S[16] ^= self.toLane(message, n, ww, 8 * ww)
- self.S[21] ^= self.toLane(message, n, ww, 9 * ww)
- self.S[ 2] ^= self.toLane(message, n, ww, 10 * ww)
- self.S[ 7] ^= self.toLane(message, n, ww, 11 * ww)
- self.S[12] ^= self.toLane(message, n, ww, 12 * ww)
- self.S[17] ^= self.toLane(message, n, ww, 13 * ww)
- self.S[22] ^= self.toLane(message, n, ww, 14 * ww)
- self.S[ 3] ^= self.toLane(message, n, ww, 15 * ww)
- self.S[ 8] ^= self.toLane(message, n, ww, 16 * ww)
- self.S[13] ^= self.toLane(message, n, ww, 17 * ww)
- self.S[18] ^= self.toLane(message, n, ww, 18 * ww)
- self.S[23] ^= self.toLane(message, n, ww, 19 * ww)
- self.S[ 4] ^= self.toLane(message, n, ww, 20 * ww)
- self.S[ 9] ^= self.toLane(message, n, ww, 21 * ww)
- self.S[14] ^= self.toLane(message, n, ww, 22 * ww)
- self.S[19] ^= self.toLane(message, n, ww, 23 * ww)
- self.S[24] ^= self.toLane(message, n, ww, 24 * ww)
- self.keccakF(self.S)
- message = message[rr:]
-
-
- def digest(self, msg = None, msglen = None, bits = 0, suffix = SHA3_SUFFIX, withReturn = None):
- '''
- Absorb the last part of the message and squeeze the Keccak sponge
-
- @param msg:bytes? The rest of the message
- @param msglen:int The length of the partial message in whole bytes
- @param bits:int The number of bits at the end of the message not covered by `msglen`
- @param suffix:str The suffix concatenate to the message
- @param withReturn:bool Whether to return the hash instead of just do a quick squeeze phrase and return `None`
- @return :bytes? The hash sum, or `None` if `withReturn` is `False`
- '''
- if msg is None:
- msg, last_byte = [], 0
- bits = 0
- else:
- msg, last_byte = msg[:msglen + bits // 8], (0 if bits % 8 == 0 else msg[msglen])
- bits %= 8
- last_byte &= (1 << bits) - 1
- msg_end = []
- for bit in suffix:
- last_byte |= int(bit) << bits
- bits += 1
- if bits == 8:
- msg_end.append(last_byte)
- last_byte = 0
- bits = 0
- if not bits == 0:
- msg_end.append(last_byte)
- msg += msg_end
- message = self.pad10star1(self.M + msg, self.r, bits)
- self.M = None
- nnn = len(message)
-
- rr = self.r >> 3
- nn = (self.n + 7) >> 3
- ww = self.w >> 3
-
- # Absorbing phase
- if ww == 8:
- for i in range(0, nnn, rr):
- n = min(len(message), rr)
- self.S[ 0] ^= self.toLane64(message, n, 0)
- self.S[ 5] ^= self.toLane64(message, n, 8)
- self.S[10] ^= self.toLane64(message, n, 16)
- self.S[15] ^= self.toLane64(message, n, 24)
- self.S[20] ^= self.toLane64(message, n, 32)
- self.S[ 1] ^= self.toLane64(message, n, 40)
- self.S[ 6] ^= self.toLane64(message, n, 48)
- self.S[11] ^= self.toLane64(message, n, 56)
- self.S[16] ^= self.toLane64(message, n, 64)
- self.S[21] ^= self.toLane64(message, n, 72)
- self.S[ 2] ^= self.toLane64(message, n, 80)
- self.S[ 7] ^= self.toLane64(message, n, 88)
- self.S[12] ^= self.toLane64(message, n, 96)
- self.S[17] ^= self.toLane64(message, n, 104)
- self.S[22] ^= self.toLane64(message, n, 112)
- self.S[ 3] ^= self.toLane64(message, n, 120)
- self.S[ 8] ^= self.toLane64(message, n, 128)
- self.S[13] ^= self.toLane64(message, n, 136)
- self.S[18] ^= self.toLane64(message, n, 144)
- self.S[23] ^= self.toLane64(message, n, 152)
- self.S[ 4] ^= self.toLane64(message, n, 160)
- self.S[ 9] ^= self.toLane64(message, n, 168)
- self.S[14] ^= self.toLane64(message, n, 176)
- self.S[19] ^= self.toLane64(message, n, 184)
- self.S[24] ^= self.toLane64(message, n, 192)
- self.keccakF(self.S)
- message = message[rr:]
- else:
- for i in range(0, nnn, rr):
- n = min(len(message), rr)
- self.S[ 0] ^= self.toLane(message, n, ww, 0)
- self.S[ 5] ^= self.toLane(message, n, ww, ww)
- self.S[10] ^= self.toLane(message, n, ww, 2 * ww)
- self.S[15] ^= self.toLane(message, n, ww, 3 * ww)
- self.S[20] ^= self.toLane(message, n, ww, 4 * ww)
- self.S[ 1] ^= self.toLane(message, n, ww, 5 * ww)
- self.S[ 6] ^= self.toLane(message, n, ww, 6 * ww)
- self.S[11] ^= self.toLane(message, n, ww, 7 * ww)
- self.S[16] ^= self.toLane(message, n, ww, 8 * ww)
- self.S[21] ^= self.toLane(message, n, ww, 9 * ww)
- self.S[ 2] ^= self.toLane(message, n, ww, 10 * ww)
- self.S[ 7] ^= self.toLane(message, n, ww, 11 * ww)
- self.S[12] ^= self.toLane(message, n, ww, 12 * ww)
- self.S[17] ^= self.toLane(message, n, ww, 13 * ww)
- self.S[22] ^= self.toLane(message, n, ww, 14 * ww)
- self.S[ 3] ^= self.toLane(message, n, ww, 15 * ww)
- self.S[ 8] ^= self.toLane(message, n, ww, 16 * ww)
- self.S[13] ^= self.toLane(message, n, ww, 17 * ww)
- self.S[18] ^= self.toLane(message, n, ww, 18 * ww)
- self.S[23] ^= self.toLane(message, n, ww, 19 * ww)
- self.S[ 4] ^= self.toLane(message, n, ww, 20 * ww)
- self.S[ 9] ^= self.toLane(message, n, ww, 21 * ww)
- self.S[14] ^= self.toLane(message, n, ww, 22 * ww)
- self.S[19] ^= self.toLane(message, n, ww, 23 * ww)
- self.S[24] ^= self.toLane(message, n, ww, 24 * ww)
- self.keccakF(self.S)
- message = message[rr:]
-
- # Squeezing phase
- if withReturn:
- rc = [0] * ((self.n + 7) >> 3)
- ptr = 0
-
- olen = self.n
- j = 0
- ni = rr // ww
- while olen > 0:
- i = 0
- while (i < ni) and (j < nn):
- v = self.S[(i % 5) * 5 + i // 5]
- for _ in range(ww):
- if j < nn:
- rc[ptr] = v & 255
- ptr += 1
- v >>= 8
- j += 1
- i += 1
- olen -= self.r
- if olen > 0:
- self.keccakF(self.S)
- if (self.n & 7) != 0:
- rc[len(rc) - 1] &= (1 << (self.n & 7)) - 1
-
- return rc
-
- olen = self.n
- while olen > self.r:
- olen -= self.r
- self.keccakF(self.S)
- return None
-
-
- def simpleSqueeze(self, times = 1):
- '''
- Force some rounds of Keccak-f
-
- @param times:int The number of rounds
- '''
- for i in range(times):
- self.keccakF(self.S)
-
-
- def fastSqueeze(self, times = 1):
- '''
- Squeeze as much as is needed to get a digest a number of times
-
- @param times:int The number of digests
- '''
- for i in range(times):
- self.keccakF(self.S) # Last squeeze did not do a ending squeeze
- olen = self.n
- while olen > self.r:
- olen -= self.r
- self.keccakF(self.S)
-
-
- def squeeze(self):
- '''
- Squeeze out another digest
-
- @return :bytes The hash sum
- '''
- self.keccakF(self.S) # Last squeeze did not do a ending squeeze
-
- nn = (self.n + 7) >> 3
- ww = self.w >> 3
- rc = [0] * nn
- olen = self.n
- j = 0
- ptr = 0
- ni = (self.r >> 3) // ww
-
- while olen > 0:
- i = 0
- while (i < ni) and (j < nn):
- v = self.S[(i % 5) * 5 + i // 5]
- for _ in range(ww):
- if j < nn:
- rc[ptr] = v
- ptr += 1
- v >>= 8
- j += 1
- i += 1
- olen -= self.r
- if olen > 0:
- self.keccakF(self.S)
-
- if (self.n & 7) != 0:
- rc[len(rc) - 1] &= (1 << (self.n & 7)) - 1
-
- return rc
-
diff --git a/python2/sha3sum.py b/python2/sha3sum.py
deleted file mode 100755
index ce00cb3..0000000
--- a/python2/sha3sum.py
+++ /dev/null
@@ -1,398 +0,0 @@
-#!/usr/bin/env python2
-# -*- coding: utf-8 -*-
-'''
-sha3sum – SHA-3 (Keccak) checksum calculator
-
-Copyright © 2013, 2014 Mattias Andrée (maandree@member.fsf.org)
-
-This program is free software: you can redistribute it and/or modify
-it under the terms of the GNU Affero General Public License as published by
-the Free Software Foundation, either version 3 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU Affero General Public License for more details.
-
-You should have received a copy of the GNU Affero General Public License
-along with this program. If not, see <http://www.gnu.org/licenses/>.
-'''
-
-import sys
-import os
-
-from sha3 import SHA3
-
-
-stdout = os.fdopen(1, 'w')
-stderr = os.fdopen(2, 'w')
-
-
-def printerr(text, end = '\n'):
- stderr.write(text + end)
- stderr.flush()
-
-
-def write(data):
- stdout.write(data)
-
-
-def flush():
- stdout.flush()
-
-
-
-if __name__ == '__main__':
- cmd = sys.argv[0]
- args = sys.argv[1:]
- if '/' in cmd:
- cmd = cmd[cmd.rfind('/') + 1:]
- if cmd.endswith('.py'):
- cmd = cmd[:-3]
-
- (O, S, R, C, W, I, J) = (None, None, None, None, None, None, None)
- (o, s, r, c, w, i, j) = (0, 0, 0, 0, 0, 0, 0)
- _o = 512 # --outputsize
- if cmd == 'sha3-224sum': _o = 224
- elif cmd == 'sha3-256sum': _o = 256
- elif cmd == 'sha3-384sum': _o = 384
- elif cmd == 'sha3-512sum': _o = 512
- _s = 1600 # --statesize
- _c = _s - (_o << 1) # --capacity
- _r = _s - _c # --bitrate
- _w = _s / 25 # --wordsize
- _i = 1 # --iterations
- _j = 1 # --squeezes
- (binary, hex, multi) = (False, False, 0)
-
- files = []
- dashed = False
- linger = None
-
- for arg in args + [None]:
- if linger is not None:
- if linger[0] in ('-h', '--help'):
- sys.stderr.buffer.write(('''
-SHA-3/Keccak checksum calculator
-
-USAGE: sha3sum [option...] < file
- sha3sum [option...] file...
-
-
-OPTIONS:
- -r BITRATE
- --bitrate The bitrate to use for checksum. (default: %d)
-
- -c CAPACITY
- --capacity The capacity to use for checksum. (default: %d)
-
- -w WORDSIZE
- --wordsize The word size to use for checksum. (default: %d)
-
- -o OUTPUTSIZE
- --outputsize The output size to use for checksum. (default: %d)
-
- -s STATESIZE
- --statesize The state size to use for checksum. (default: %d)
-
- -i ITERATIONS
- --iterations The number of hash iterations to run. (default: %d)
-
- -j SQUEEZES
- --squeezes The number of hash squeezes to run. (default: %d)
-
- -x
- --hex Read the input in hexadecimal, rather than binary.
-
- -b
- --binary Print the checksum in binary, rather than hexadecimal.
-
- -m
- --multi Print the checksum at all iterations.
-
-
-COPYRIGHT:
-
-Copyright © 2013, 2014 Mattias Andrée (maandree@member.fsf.org)
-
-This program is free software: you can redistribute it and/or modify
-it under the terms of the GNU Affero General Public License as published by
-the Free Software Foundation, either version 3 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU Affero General Public License for more details.
-
-You should have received a copy of the GNU Affero General Public License
-along with this program. If not, see <http://www.gnu.org/licenses/>.
-
-''' % (_r, _c, _w, _o, _s, _i, _j)).encode('utf-8'))
- sys.stderr.buffer.flush()
- exit(0)
- else:
- if linger[1] is None:
- linger[1] = arg
- arg = None
- if linger[0] in ('-r', '--bitrate'):
- R = int(linger[1])
- elif linger[0] in ('-c', '--capacity'):
- C = int(linger[1])
- elif linger[0] in ('-w', '--wordsize'):
- W = int(linger[1])
- elif linger[0] in ('-o', '--outputsize'):
- O = int(linger[1])
- elif linger[0] in ('-s', '--statesize'):
- S = int(linger[1])
- elif linger[0] in ('-i', '--iterations'):
- I = int(linger[1])
- elif linger[0] in ('-j', '--squeezes'):
- J = int(linger[1])
- else:
- printerr(sys.argv[0] + ': unrecognised option: ' + linger[0])
- sys.exit(1)
- linger = None
- if arg is None:
- continue
- if arg is None:
- continue
- if dashed:
- files.append(None if arg == '-' else arg)
- elif arg == '--':
- dashed = True
- elif arg == '-':
- files.append(None)
- elif arg.startswith('--'):
- if '=' in arg:
- linger = (arg[:arg.find('=')], arg[arg.find('=') + 1:])
- else:
- if arg == '--binary':
- binary = True
- elif arg == '--multi':
- multi += 1
- elif arg == '--hex':
- hex = True
- else:
- linger = [arg, None]
- elif arg.startswith('-'):
- arg = arg[1:]
- if arg[0] == 'b':
- binary = True
- arg = arg[1:]
- elif arg[0] == 'b':
- multi += 1
- arg = arg[1:]
- elif arg[0] == 'x':
- hex = True
- arg = arg[1:]
- elif len(arg) == 1:
- linger = ['-' + arg, None]
- else:
- linger = ['-' + arg[0], arg[1:]]
- else:
- files.append(arg)
-
-
- i = _i if I is None else I
- j = _j if J is None else J
-
-
- if S is not None:
- s = S
- if ((s <= 0) or (s > 1600) or (s % 25 != 0)):
- printerr(cmd + ': the state size must be a positive multiple of 25 and is limited to 1600.')
- sys.exit(6)
-
- if W is not None:
- w = W
- if (w <= 0) or (w > 64):
- printerr(cmd + ': the word size must be positive and is limited to 64.')
- sys.exit(6)
- if (S is not None) and (s != w * 25):
- printerr(cmd + ': the state size must be 25 times of the word size.')
- sys.exit(6)
- elif S is None:
- S = w * 25
-
- if C is not None:
- c = C
- if (c <= 0) or ((c & 7) != 0):
- printerr(cmd + ': the capacity must be a positive multiple of 8.')
- sys.exit(6)
-
- if R is not None:
- r = R
- if (r <= 0) or ((r & 7) != 0):
- printerr(cmd + ': the bitrate must be a positive multiple of 8.')
- sys.exit(6)
-
- if O is not None:
- o = O
- if o <= 0:
- printerr(cmd + ': the output size must be positive.')
- sys.exit(6)
-
-
- if (R is None) and (C is None) and (O is None): ## s?
- s = _s if S is None else s
- o = (((s << 5) // 100 + 7) >> 3) << 3
- r = o << 1
- c = s - r
- o = 8 if o < 8 else o
- elif (R is None) and (C is None): ## !o s?
- r = _r
- c = _c
- s = (r + c) if S is None else s
- elif R is None: ## !c o? s?
- s = _s if S is None else s
- r = s - c
- o = (8 if c == 8 else (c << 1)) if O is None else o
- elif C is None: ## !r o? s?
- s = _s if S is None else s
- c = s - r
- o = (8 if c == 8 else (c << 1)) if O is None else o
- else: ## !r !c o? s?
- s = (r + c) if S is None else s
- o = (8 if c == 8 else (c << 1)) if O is None else o
-
-
- printerr('Bitrate: %d' % r)
- printerr('Capacity: %d' % c)
- printerr('Word size: %d' % w)
- printerr('State size: %d' % s)
- printerr('Output size: %d' % o)
- printerr('Iterations: %d' % i)
- printerr('Squeezes: %d' % j)
-
-
- if r > s:
- printerr(cmd + ': the bitrate must not be higher than the state size.')
- sys.exit(6)
- if c > s:
- printerr(cmd + ': the capacity must not be higher than the state size.')
- sys.exit(6)
- if r + c != s:
- printerr(cmd + ': the sum of the bitrate and the capacity must equal the state size.')
- sys.exit(6)
-
-
- if len(files) == 0:
- files.append(None)
- if i < 1:
- printerr(cmd + ': sorry, I will only do at least one hash iteration!\n')
- sys.exit(3)
- if j < 1:
- printerr(cmd + ': sorry, I will only do at least one squeeze iteration!\n')
- sys.exit(3)
- stdin = None
- fail = False
- sha = SHA3()
- for filename in files:
- rc = ''
- fn = '/dev/stdin' if filename is None else filename
- with open(fn, 'rb') as file:
- try:
- if (filename is not None) or (stdin is None):
- sha.initialise(r, c, o)
- blksize = 4096
- try:
- blksize = os.stat(os.path.realpath(fn)).st_blksize
- if blksize <= 0:
- blksize = 4096
- except:
- pass
- while True:
- chunk = [ord(b) for b in file.read(blksize)]
- if len(chunk) == 0:
- break
- if not hex:
- sha.update(chunk)
- else:
- n = len(chunk) >> 1
- for _ in range(n):
- (a, b) = (chunk[_ << 1], chunk[(_ << 1 | 1)])
- a = ((a & 15) + (0 if a <= '9' else 9)) << 4
- b = (b & 15) + (0 if b <= '9' else 0)
- chunk[_] = a | b
- sha.update(chunk, n)
- bs = sha.digest(withReturn = j == 1)
- if j > 2:
- sha.fastSqueeze(j - 2)
- if j > 1:
- bs = sha.squeeze();
- if filename is None:
- stdin = bs
- else:
- bs = stdin
- if multi == 0:
- for _ in range(i - 1):
- sha.initialise(r, c, o)
- bs = sha.digest(bs, withReturn = j == 1)
- if j > 2:
- sha.fastSqueeze(j - 2)
- if j > 1:
- bs = sha.squeeze();
- if binary:
- write(bs)
- else:
- for b in bs:
- rc += "0123456789ABCDEF"[b >> 4]
- rc += "0123456789ABCDEF"[b & 15]
- rc += ' ' + ('-' if filename is None else filename) + '\n'
- write(rc.encode('utf-8'))
- elif multi == 1:
- if binary:
- write(bs)
- else:
- for b in bs:
- rc += "0123456789ABCDEF"[b >> 4]
- rc += "0123456789ABCDEF"[b & 15]
- rc += '\n'
- write(rc.encode('UTF-8'))
- for _ in range(i - 1):
- sha.initialise(r, c, o)
- bs = sha.digest(bs, j == 1)
- if j > 2:
- sha.fastSqueeze(j - 2)
- if j > 1:
- bs = sha.squeeze();
- if binary:
- write(bs);
- else:
- rc = ''
- for b in bs:
- rc += "0123456789ABCDEF"[b >> 4]
- rc += "0123456789ABCDEF"[b & 15]
- rc += '\n'
- write(rc.encode('UTF-8'))
- else:
- got = set()
- loop = None
- for _ in range(i):
- if _ > 0:
- pass
- rc = ''
- for b in bs:
- rc += "0123456789ABCDEF"[b >> 4]
- rc += "0123456789ABCDEF"[b & 15]
- if loop is None:
- if rc in got:
- loop = rc
- else:
- got.add(rc)
- if loop == rc:
- rc = '\033[31m%s\033[00m' % rc;
- write(rc.encode('utf-8'))
- flush()
- if loop is not None:
- printerr('\033[01;31mLoop found\033[00m')
- flush()
- except Exception as err:
- printerr(cmd + ': cannot read file: ' + fn + ': ' + str(err))
- fail = True
- flush()
- if fail:
- sys.exit(5)
-