diff options
Diffstat (limited to 'java/SHA3.java')
-rw-r--r-- | java/SHA3.java | 755 |
1 files changed, 755 insertions, 0 deletions
diff --git a/java/SHA3.java b/java/SHA3.java new file mode 100644 index 0000000..4d39d21 --- /dev/null +++ b/java/SHA3.java @@ -0,0 +1,755 @@ +/** + * sha3sum – SHA-3 (Keccak) checksum calculator + * + * Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU Affero General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU Affero General Public License for more details. + * + * You should have received a copy of the GNU Affero General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + + +/** + * SHA-3/Keccak hash algorithm implementation + * + * @author Mattias Andrée <a href="mailto:maandree@member.fsf.org">maandree@member.fsf.org</a> + */ +public class SHA3 +{ + /** + * Round contants + */ + private static final long[] RC = { + 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L, + 0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L, + 0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL, + 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L, + 0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL, + 0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L}; + + /** + * Keccak-f round temporary + */ + private static long[] B = new long[25]; + + /** + * Keccak-f round temporary + */ + private static long[] C = new long[5]; + + + /** + * The bitrate + */ + private static int r = 0; + + /** + * The capacity + */ + private static int c = 0; + + /** + * The output size + */ + private static int n = 0; + + /** + * The state size + */ + private static int b = 0; + + /** + * The word size + */ + private static int w = 0; + + /** + * The word mask + */ + private static long wmod = 0; + + /** + * ℓ, the binary logarithm of the word size + */ + private static int l = 0; + + /** + * 12 + 2ℓ, the number of rounds + */ + private static int nr = 0; + + + /** + * The current state + */ + private static long[] S = null; + + /** + * Left over water to fill the sponge with at next update + */ + private static byte[] M = null; + + /** + * Pointer for {@link #M} + */ + private static int mptr = 0; + + + + /** + * Hidden constructor + */ + private SHA3() + { + // Inhibit instansiation + } + + + + /** + * Rotate a word + * + * @param x The value to rotate + * @param n Rotation steps, may not be 0 + * @return The value rotated + */ + private static long rotate(long x, int n) + { + long m; + return ((x >>> (SHA3.w - (m = n % SHA3.w))) + (x << m)) & SHA3.wmod; + } + + + /** + * Rotate a 64-bit word + * + * @param x The value to rotate + * @param n Rotation steps, may not be 0 + * @return The value rotated + */ + private static long rotate64(long x, int n) + { + return (x >>> (64 - n)) + (x << n); + } + + + /** + * Binary logarithm + * + * @param x The value of which to calculate the binary logarithm + * @return The binary logarithm + */ + private static int lb(int x) + { + int rc = 0; + if ((x & 0xFF00) != 0) { rc += 8; x >>= 8; } + if ((x & 0x00F0) != 0) { rc += 4; x >>= 4; } + if ((x & 0x000C) != 0) { rc += 2; x >>= 2; } + if ((x & 0x0002) != 0) rc += 1; + return rc; + } + + /** + * Perform one round of computation + * + * @param A The current state + * @param rc Round constant + */ + private static void keccakFRound(long[] A, long rc) + { + /* θ step (step 1 of 3) */ + for (int i = 0, j = 0; i < 5; i++, j += 5) + SHA3.C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4]; + + long da, db, dc, dd, de; + + if (SHA3.w == 64) + { + /* ρ and π steps, with last two part of θ */ + SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1)); + SHA3.B[1] = SHA3.rotate64(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1)), 28); + SHA3.B[2] = SHA3.rotate64(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1)), 1); + SHA3.B[3] = SHA3.rotate64(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1)), 27); + SHA3.B[4] = SHA3.rotate64(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1)), 62); + + SHA3.B[5] = SHA3.rotate64(A[ 6] ^ db, 44); + SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20); + SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6); + SHA3.B[8] = SHA3.rotate64(A[ 1] ^ da, 36); + SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55); + + SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43); + SHA3.B[11] = SHA3.rotate64(A[ 2] ^ da, 3); + SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25); + SHA3.B[13] = SHA3.rotate64(A[ 7] ^ db, 10); + SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39); + + SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21); + SHA3.B[16] = SHA3.rotate64(A[ 8] ^ db, 45); + SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8); + SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15); + SHA3.B[19] = SHA3.rotate64(A[ 3] ^ da, 41); + + SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14); + SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61); + SHA3.B[22] = SHA3.rotate64(A[ 4] ^ da, 18); + SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56); + SHA3.B[24] = SHA3.rotate64(A[ 9] ^ db, 2); + } + else + { + /* ρ and π steps, with last two part of θ */ + SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1)); + SHA3.B[1] = SHA3.rotate(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1)), 28); + SHA3.B[2] = SHA3.rotate(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1)), 1); + SHA3.B[3] = SHA3.rotate(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1)), 27); + SHA3.B[4] = SHA3.rotate(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1)), 62); + + SHA3.B[5] = SHA3.rotate(A[ 6] ^ db, 44); + SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20); + SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6); + SHA3.B[8] = SHA3.rotate(A[ 1] ^ da, 36); + SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55); + + SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43); + SHA3.B[11] = SHA3.rotate(A[ 2] ^ da, 3); + SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25); + SHA3.B[13] = SHA3.rotate(A[ 7] ^ db, 10); + SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39); + + SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21); + SHA3.B[16] = SHA3.rotate(A[ 8] ^ db, 45); + SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8); + SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15); + SHA3.B[19] = SHA3.rotate(A[ 3] ^ da, 41); + + SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14); + SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61); + SHA3.B[22] = SHA3.rotate(A[ 4] ^ da, 18); + SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56); + SHA3.B[24] = SHA3.rotate(A[ 9] ^ db, 2); + } + + /* ξ step */ + for (int i = 0; i < 15; i++) + A[i ] = SHA3.B[i ] ^ ((~(SHA3.B[i + 5])) & SHA3.B[i + 10]); + for (int i = 0; i < 5; i++) + { + A[i + 15] = SHA3.B[i + 15] ^ ((~(SHA3.B[i + 20])) & SHA3.B[i ]); + A[i + 20] = SHA3.B[i + 20] ^ ((~(SHA3.B[i ])) & SHA3.B[i + 5]); + } + + /* ι step */ + A[0] ^= rc; + } + + + /** + * Perform Keccak-f function + * + * @param A The current state + */ + private static void keccakF(long[] A) + { + if (SHA3.nr == 24) + for (int i = 0; i < 24; i++) + SHA3.keccakFRound(A, SHA3.RC[i]); + else + for (int i = 0; i < SHA3.nr; i++) + SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod); + } + + + /** + * Convert a chunk of byte:s to a word + * + * @param message The message + * @param msgoff The number of times to loop has run times the bitrate + * @param rr Bitrate in bytes + * @param ww Word size in bytes + * @param off The offset in the message + * @return Lane + */ + private static long toLane(byte[] message, int msgoff, int rr, int ww, int off) + { + long rc = 0; + int n = Math.min(message.length, rr) + msgoff; + for (int i = off + ww - 1; i >= off; i--) + rc = (rc << 8) | ((i < n) ? (long)(message[i] & 255) : 0L); + return rc; + } + + + /** + * Convert a chunk of byte:s to a 64-bit word + * + * @param message The message + * @param msgoff The number of times to loop has run times the bitrate + * @param rr Bitrate in bytes + * @param off The offset in the message + * @return Lane + */ + private static long toLane64(byte[] message, int msgoff, int rr, int off) + { + int n = Math.min(message.length, rr) + msgoff; + return ((off + 7 < n) ? ((long)(message[off + 7] & 255) << 56) : 0L) | + ((off + 6 < n) ? ((long)(message[off + 6] & 255) << 48) : 0L) | + ((off + 5 < n) ? ((long)(message[off + 5] & 255) << 40) : 0L) | + ((off + 4 < n) ? ((long)(message[off + 4] & 255) << 32) : 0L) | + ((off + 3 < n) ? ((long)(message[off + 3] & 255) << 24) : 0L) | + ((off + 2 < n) ? ((long)(message[off + 2] & 255) << 16) : 0L) | + ((off + 1 < n) ? ((long)(message[off + 1] & 255) << 8) : 0L) | + ((off < n) ? ((long)(message[off] & 255)) : 0L); + } + + + /** + * pad 10*1 + * + * @param msg The message to pad + * @parm len The length of the message + * @param r The bitrate + * @return The message padded + */ + private static byte[] pad10star1(byte[] msg, int len, int r) + { + int nrf = (len <<= 3) >> 3; + int nbrf = len & 7; + int ll = len % r; + + byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf))); + + byte[] message; + if ((r - 8 <= ll) && (ll <= r - 2)) + { + message = new byte[len = nrf + 1]; + message[nrf] = (byte)(b ^ 128); + } + else + { + len = (nrf + 1) << 3; + len = ((len - (len % r) + (r - 8)) >> 3) + 1; + message = new byte[len]; + message[nrf] = b; + message[len - 1] = -128; + } + System.arraycopy(msg, 0, message, 0, nrf); + + return message; + } + + + /** + * Initialise Keccak sponge + * + * @param r The bitrate + * @param c The capacity + * @param n The output size + */ + public static void initialise(int r, int c, int n) + { + SHA3.r = r; + SHA3.c = c; + SHA3.n = n; + SHA3.b = r + c; + SHA3.w = SHA3.b / 25; + SHA3.l = SHA3.lb(SHA3.w); + SHA3.nr = 12 + (SHA3.l << 1); + SHA3.wmod = w == 64 ? -1L : (1L << SHA3.w) - 1L; + SHA3.S = new long[25]; + SHA3.M = new byte[(SHA3.r * SHA3.b) >> 2]; + SHA3.mptr = 0; + } + + + /** + * Absorb the more of the message message to the Keccak sponge + * + * @param msg The partial message + */ + public static void update(byte[] msg) + { + update(msg, msg.length); + } + + + /** + * Absorb the more of the message message to the Keccak sponge + * + * @param msg The partial message + * @param msglen The length of the partial message + */ + public static void update(byte[] msg, int msglen) + { + int rr = SHA3.r >> 3; + int ww = SHA3.w >> 3; + + if (SHA3.mptr + msglen > SHA3.M.length) + System.arraycopy(SHA3.M, 0, SHA3.M = new byte[(SHA3.M.length + msglen) << 1], 0, SHA3.mptr); + System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen); + int len = SHA3.mptr += msglen; + len -= len % ((SHA3.r * SHA3.b) >> 3); + byte[] message; + System.arraycopy(SHA3.M, 0, message = new byte[len], 0, len); + System.arraycopy(SHA3.M, len, SHA3.M, 0, SHA3.mptr -= len); + + /* Absorbing phase */ + if (ww == 8) + for (int i = 0; i < len; i += rr) + { + SHA3.S[ 0] ^= SHA3.toLane64(message, i, rr, i + 0); + SHA3.S[ 5] ^= SHA3.toLane64(message, i, rr, i + 8); + SHA3.S[10] ^= SHA3.toLane64(message, i, rr, i + 16); + SHA3.S[15] ^= SHA3.toLane64(message, i, rr, i + 24); + SHA3.S[20] ^= SHA3.toLane64(message, i, rr, i + 32); + SHA3.S[ 1] ^= SHA3.toLane64(message, i, rr, i + 40); + SHA3.S[ 6] ^= SHA3.toLane64(message, i, rr, i + 48); + SHA3.S[11] ^= SHA3.toLane64(message, i, rr, i + 56); + SHA3.S[16] ^= SHA3.toLane64(message, i, rr, i + 64); + SHA3.S[21] ^= SHA3.toLane64(message, i, rr, i + 72); + SHA3.S[ 2] ^= SHA3.toLane64(message, i, rr, i + 80); + SHA3.S[ 7] ^= SHA3.toLane64(message, i, rr, i + 88); + SHA3.S[12] ^= SHA3.toLane64(message, i, rr, i + 96); + SHA3.S[17] ^= SHA3.toLane64(message, i, rr, i + 104); + SHA3.S[22] ^= SHA3.toLane64(message, i, rr, i + 112); + SHA3.S[ 3] ^= SHA3.toLane64(message, i, rr, i + 120); + SHA3.S[ 8] ^= SHA3.toLane64(message, i, rr, i + 128); + SHA3.S[13] ^= SHA3.toLane64(message, i, rr, i + 136); + SHA3.S[18] ^= SHA3.toLane64(message, i, rr, i + 144); + SHA3.S[23] ^= SHA3.toLane64(message, i, rr, i + 152); + SHA3.S[ 4] ^= SHA3.toLane64(message, i, rr, i + 160); + SHA3.S[ 9] ^= SHA3.toLane64(message, i, rr, i + 168); + SHA3.S[14] ^= SHA3.toLane64(message, i, rr, i + 176); + SHA3.S[19] ^= SHA3.toLane64(message, i, rr, i + 184); + SHA3.S[24] ^= SHA3.toLane64(message, i, rr, i + 192); + SHA3.keccakF(SHA3.S); + } + else + for (int i = 0; i < len; i += rr) + { + SHA3.S[ 0] ^= SHA3.toLane(message, i, rr, ww, i + 0 ); + SHA3.S[ 5] ^= SHA3.toLane(message, i, rr, ww, i + w); + SHA3.S[10] ^= SHA3.toLane(message, i, rr, ww, i + 2 * w); + SHA3.S[15] ^= SHA3.toLane(message, i, rr, ww, i + 3 * w); + SHA3.S[20] ^= SHA3.toLane(message, i, rr, ww, i + 4 * w); + SHA3.S[ 1] ^= SHA3.toLane(message, i, rr, ww, i + 5 * w); + SHA3.S[ 6] ^= SHA3.toLane(message, i, rr, ww, i + 6 * w); + SHA3.S[11] ^= SHA3.toLane(message, i, rr, ww, i + 7 * w); + SHA3.S[16] ^= SHA3.toLane(message, i, rr, ww, i + 8 * w); + SHA3.S[21] ^= SHA3.toLane(message, i, rr, ww, i + 9 * w); + SHA3.S[ 2] ^= SHA3.toLane(message, i, rr, ww, i + 10 * w); + SHA3.S[ 7] ^= SHA3.toLane(message, i, rr, ww, i + 11 * w); + SHA3.S[12] ^= SHA3.toLane(message, i, rr, ww, i + 12 * w); + SHA3.S[17] ^= SHA3.toLane(message, i, rr, ww, i + 13 * w); + SHA3.S[22] ^= SHA3.toLane(message, i, rr, ww, i + 14 * w); + SHA3.S[ 3] ^= SHA3.toLane(message, i, rr, ww, i + 15 * w); + SHA3.S[ 8] ^= SHA3.toLane(message, i, rr, ww, i + 16 * w); + SHA3.S[13] ^= SHA3.toLane(message, i, rr, ww, i + 17 * w); + SHA3.S[18] ^= SHA3.toLane(message, i, rr, ww, i + 18 * w); + SHA3.S[23] ^= SHA3.toLane(message, i, rr, ww, i + 19 * w); + SHA3.S[ 4] ^= SHA3.toLane(message, i, rr, ww, i + 20 * w); + SHA3.S[ 9] ^= SHA3.toLane(message, i, rr, ww, i + 21 * w); + SHA3.S[14] ^= SHA3.toLane(message, i, rr, ww, i + 22 * w); + SHA3.S[19] ^= SHA3.toLane(message, i, rr, ww, i + 23 * w); + SHA3.S[24] ^= SHA3.toLane(message, i, rr, ww, i + 24 * w); + SHA3.keccakF(SHA3.S); + } + } + + + /** + * Squeeze the Keccak sponge + * + * @return The hash sum + */ + public static byte[] digest() + { + return digest(null, 0, true); + } + + + /** + * Squeeze the Keccak sponge + * + * @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null} + * @return The hash sum, or {@code null} if <tt>withReturn</tt> is {@code false} + */ + public static byte[] digest(boolean withReturn) + { + return digest(null, 0, withReturn); + } + + + /** + * Absorb the last part of the message and squeeze the Keccak sponge + * + * @param msg The rest of the message + * @return The hash sum + */ + public static byte[] digest(byte[] msg) + { + return digest(msg, msg == null ? 0 : msg.length, true); + } + + + /** + * Absorb the last part of the message and squeeze the Keccak sponge + * + * @param msg The rest of the message + * @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null} + * @return The hash sum, or {@code null} if <tt>withReturn</tt> is {@code false} + */ + public static byte[] digest(byte[] msg, boolean withReturn) + { + return digest(msg, msg == null ? 0 : msg.length, withReturn); + } + + + /** + * Absorb the last part of the message and squeeze the Keccak sponge + * + * @param msg The rest of the message + * @param msglen The length of the partial message + * @return The hash sum + */ + public static byte[] digest(byte[] msg, int msglen) + { + return digest(msg, msg == null ? 0 : msg.length, true); + } + + + /** + * Absorb the last part of the message and squeeze the Keccak sponge + * + * @param msg The rest of the message + * @param msglen The length of the partial message + * @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null} + * @return The hash sum, or {@code null} if <tt>withReturn</tt> is {@code false} + */ + public static byte[] digest(byte[] msg, int msglen, boolean withReturn) + { + byte[] message; + if ((msg == null) || (msglen == 0)) + message = SHA3.pad10star1(SHA3.M, SHA3.mptr, SHA3.r); + else + { + if (SHA3.mptr + msglen > SHA3.M.length) + System.arraycopy(SHA3.M, 0, SHA3.M = new byte[SHA3.M.length + msglen], 0, SHA3.mptr); + System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen); + message = SHA3.pad10star1(SHA3.M, SHA3.mptr + msglen, SHA3.r); + } + SHA3.M = null; + int len = message.length; + + int rr = SHA3.r >> 3; + int nn = (SHA3.n + 7) >> 3; + int ww = SHA3.w >> 3; + + /* Absorbing phase */ + if (ww == 8) + for (int i = 0; i < len; i += rr) + { + SHA3.S[ 0] ^= SHA3.toLane64(message, i, rr, i + 0); + SHA3.S[ 5] ^= SHA3.toLane64(message, i, rr, i + 8); + SHA3.S[10] ^= SHA3.toLane64(message, i, rr, i + 16); + SHA3.S[15] ^= SHA3.toLane64(message, i, rr, i + 24); + SHA3.S[20] ^= SHA3.toLane64(message, i, rr, i + 32); + SHA3.S[ 1] ^= SHA3.toLane64(message, i, rr, i + 40); + SHA3.S[ 6] ^= SHA3.toLane64(message, i, rr, i + 48); + SHA3.S[11] ^= SHA3.toLane64(message, i, rr, i + 56); + SHA3.S[16] ^= SHA3.toLane64(message, i, rr, i + 64); + SHA3.S[21] ^= SHA3.toLane64(message, i, rr, i + 72); + SHA3.S[ 2] ^= SHA3.toLane64(message, i, rr, i + 80); + SHA3.S[ 7] ^= SHA3.toLane64(message, i, rr, i + 88); + SHA3.S[12] ^= SHA3.toLane64(message, i, rr, i + 96); + SHA3.S[17] ^= SHA3.toLane64(message, i, rr, i + 104); + SHA3.S[22] ^= SHA3.toLane64(message, i, rr, i + 112); + SHA3.S[ 3] ^= SHA3.toLane64(message, i, rr, i + 120); + SHA3.S[ 8] ^= SHA3.toLane64(message, i, rr, i + 128); + SHA3.S[13] ^= SHA3.toLane64(message, i, rr, i + 136); + SHA3.S[18] ^= SHA3.toLane64(message, i, rr, i + 144); + SHA3.S[23] ^= SHA3.toLane64(message, i, rr, i + 152); + SHA3.S[ 4] ^= SHA3.toLane64(message, i, rr, i + 160); + SHA3.S[ 9] ^= SHA3.toLane64(message, i, rr, i + 168); + SHA3.S[14] ^= SHA3.toLane64(message, i, rr, i + 176); + SHA3.S[19] ^= SHA3.toLane64(message, i, rr, i + 184); + SHA3.S[24] ^= SHA3.toLane64(message, i, rr, i + 192); + SHA3.keccakF(SHA3.S); + } + else + for (int i = 0; i < len; i += rr) + { + SHA3.S[ 0] ^= SHA3.toLane(message, i, rr, ww, i + 0 ); + SHA3.S[ 5] ^= SHA3.toLane(message, i, rr, ww, i + w); + SHA3.S[10] ^= SHA3.toLane(message, i, rr, ww, i + 2 * w); + SHA3.S[15] ^= SHA3.toLane(message, i, rr, ww, i + 3 * w); + SHA3.S[20] ^= SHA3.toLane(message, i, rr, ww, i + 4 * w); + SHA3.S[ 1] ^= SHA3.toLane(message, i, rr, ww, i + 5 * w); + SHA3.S[ 6] ^= SHA3.toLane(message, i, rr, ww, i + 6 * w); + SHA3.S[11] ^= SHA3.toLane(message, i, rr, ww, i + 7 * w); + SHA3.S[16] ^= SHA3.toLane(message, i, rr, ww, i + 8 * w); + SHA3.S[21] ^= SHA3.toLane(message, i, rr, ww, i + 9 * w); + SHA3.S[ 2] ^= SHA3.toLane(message, i, rr, ww, i + 10 * w); + SHA3.S[ 7] ^= SHA3.toLane(message, i, rr, ww, i + 11 * w); + SHA3.S[12] ^= SHA3.toLane(message, i, rr, ww, i + 12 * w); + SHA3.S[17] ^= SHA3.toLane(message, i, rr, ww, i + 13 * w); + SHA3.S[22] ^= SHA3.toLane(message, i, rr, ww, i + 14 * w); + SHA3.S[ 3] ^= SHA3.toLane(message, i, rr, ww, i + 15 * w); + SHA3.S[ 8] ^= SHA3.toLane(message, i, rr, ww, i + 16 * w); + SHA3.S[13] ^= SHA3.toLane(message, i, rr, ww, i + 17 * w); + SHA3.S[18] ^= SHA3.toLane(message, i, rr, ww, i + 18 * w); + SHA3.S[23] ^= SHA3.toLane(message, i, rr, ww, i + 19 * w); + SHA3.S[ 4] ^= SHA3.toLane(message, i, rr, ww, i + 20 * w); + SHA3.S[ 9] ^= SHA3.toLane(message, i, rr, ww, i + 21 * w); + SHA3.S[14] ^= SHA3.toLane(message, i, rr, ww, i + 22 * w); + SHA3.S[19] ^= SHA3.toLane(message, i, rr, ww, i + 23 * w); + SHA3.S[24] ^= SHA3.toLane(message, i, rr, ww, i + 24 * w); + SHA3.keccakF(SHA3.S); + } + + /* Squeezing phase */ + if (withReturn) + { + byte[] rc = new byte[(SHA3.n + 7) >> 3]; + int ptr = 0; + + int olen = SHA3.n; + int j = 0; + int ni = Math.min(25, rr); + while (olen > 0) + { + int i = 0; + while ((i < ni) && (j < nn)) + { + long v = SHA3.S[(i % 5) * 5 + i / 5]; + for (int _ = 0; _ < ww; _++) + { + if (j < nn) + { + rc[ptr] = (byte)v; + ptr += 1; + } + v >>= 8; + j += 1; + } + i += 1; + } + olen -= SHA3.r; + if (olen > 0) + SHA3.keccakF(SHA3.S); + } + if ((SHA3.n & 7) != 0) + rc[rc.length - 1] &= (1 << (SHA3.n & 7)) - 1; + + return rc; + } + int olen = SHA3.n; + while ((olen -= SHA3.r) > 0) + SHA3.keccakF(SHA3.S); + return null; + } + + + /** + * Force a round of Keccak-f + */ + public static void simpleSqueeze() + { + SHA3.keccakF(SHA3.S); + } + + + /** + * Force some rounds of Keccak-f + * + * @param times The number of rounds + */ + public static void simpleSqueeze(int times) + { + for (int i = 0; i < times; i++) + SHA3.keccakF(SHA3.S); + } + + + /** + * Squeeze as much as is needed to get a digest + */ + public static void fastSqueeze() + { + SHA3.keccakF(SHA3.S); /* Last squeeze did not do a ending squeeze */ + int olen = SHA3.n; + while ((olen -= SHA3.r) > 0) + SHA3.keccakF(SHA3.S); + } + + + /** + * Squeeze as much as is needed to get a digest a number of times + * + * @param times The number of digests + */ + public static void fastSqueeze(int times) + { + for (int i = 0; i < times; i++) + { + SHA3.keccakF(SHA3.S); /* Last squeeze did not do a ending squeeze */ + int olen = SHA3.n; + while ((olen -= SHA3.r) > 0) + SHA3.keccakF(SHA3.S); + } + } + + + /** + * Squeeze out another digest + * + * @return The hash sum + */ + public static byte[] squeeze() + { + SHA3.keccakF(SHA3.S); /* Last squeeze did not do a ending squeeze */ + + int nn, ww = SHA3.w >> 3; + byte[] rc = new byte[nn = (SHA3.n + 7) >> 3]; + + int olen = SHA3.n; + int j = 0, ptr = 0; + int ni = Math.min(25, SHA3.r >> 3); + while (olen > 0) + { + int i = 0; + while ((i < ni) && (j < nn)) + { + long v = SHA3.S[(i % 5) * 5 + i / 5]; + for (int _ = 0; _ < ww; _++) + { + if (j < nn) + { + rc[ptr] = (byte)v; + ptr += 1; + } + v >>= 8; + j += 1; + } + i += 1; + } + olen -= SHA3.r; + if (olen > 0) + SHA3.keccakF(SHA3.S); + } + if ((SHA3.n & 7) != 0) + rc[rc.length - 1] &= (1 << (SHA3.n & 7)) - 1; + + return rc; + } + +} |