aboutsummaryrefslogtreecommitdiffstats
path: root/c/sha3.c
diff options
context:
space:
mode:
Diffstat (limited to 'c/sha3.c')
-rw-r--r--c/sha3.c601
1 files changed, 601 insertions, 0 deletions
diff --git a/c/sha3.c b/c/sha3.c
new file mode 100644
index 0000000..909c9e7
--- /dev/null
+++ b/c/sha3.c
@@ -0,0 +1,601 @@
+/**
+ * sha3sum – SHA-3 (Keccak) checksum calculator
+ *
+ * Copyright © 2013 Mattias Andrée (maandree@member.fsf.org)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#if __x86_64__ || __ppc64__
+ #define llong long int
+#else
+ #define llong long long int
+#endif
+
+
+#define null 0
+#define byte char
+#define boolean long
+#define true 1
+#define false 0
+
+
+/**
+ * Round contants
+ */
+static const llong RC[] = {
+ 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L,
+ 0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L,
+ 0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL,
+ 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L,
+ 0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL,
+ 0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L};
+
+/**
+ * Keccak-f round temporary
+ */
+static llong B[25];
+
+/**
+ * Keccak-f round temporary
+ */
+static llong C[5];
+
+
+/**
+ * The bitrate
+ */
+static long r = 0;
+
+/**
+ * The capacity
+ */
+static long c = 0;
+
+/**
+ * The output size
+ */
+static long n = 0;
+
+/**
+ * The state size
+ */
+static long b = 0;
+
+/**
+ * The word size
+ */
+static long w = 0;
+
+/**
+ * The word mask
+ */
+static llong wmod = 0;
+
+/**
+ * ℓ, the binary logarithm of the word size
+ */
+static long l = 0;
+
+/**
+ * 12 + 2ℓ, the number of rounds
+ */
+static long nr = 0;
+
+
+/**
+ * The current state
+ */
+static llong* S = null;
+
+/**
+ * Left over water to fill the sponge with at next update
+ */
+static byte* M = null;
+
+/**
+ * Polonger for {@link #M}
+ */
+static long mptr = 0;
+
+
+
+/**
+ * Rotate a word
+ *
+ * @param x The value to rotate
+ * @param n Rotation steps, may not be 0
+ * @return The value rotated
+ */
+static llong rotate(llong x, long n)
+{
+ llong m;
+ return ((x >> (w - (m = n % w))) + (x << m)) & wmod;
+}
+
+
+/**
+ * Rotate a 64-bit word
+ *
+ * @param x The value to rotate
+ * @param n Rotation steps, may not be 0
+ * @return The value rotated
+ */
+static llong rotate64(llong x, long n)
+{
+ return (llong)((unsigned llong)x >> (w - n)) + (x << n);
+}
+
+
+/**
+ * Binary logarithm
+ *
+ * @param x The value of which to calculate the binary logarithm
+ * @return The binary logarithm
+ */
+static long lb(long x)
+{
+ return (((x & 0xFF00) == 0 ? 0 : 8) +
+ ((x & 0xF0F0) == 0 ? 0 : 4)) +
+ (((x & 0xCCCC) == 0 ? 0 : 2) +
+ ((x & 0xAAAA) == 0 ? 0 : 1));
+}
+
+
+/**
+ * Perform one round of computation
+ *
+ * @param A The current state
+ * @param rc Round constant
+ */
+static void keccakFRound(llong* A, llong rc)
+{
+ /* θ step (step 1 of 3) */
+ for (long i = 0, j = 0; i < 5; i++, j += 5)
+ SHA3.C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4];
+
+ llong da, db, dc, dd, de;
+
+ if (SHA3.w == 64)
+ {
+ /* ρ and π steps, with last two part of θ */
+ SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1));
+ SHA3.B[1] = SHA3.rotate64(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1)), 28);
+ SHA3.B[2] = SHA3.rotate64(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1)), 1);
+ SHA3.B[3] = SHA3.rotate64(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1)), 27);
+ SHA3.B[4] = SHA3.rotate64(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1)), 62);
+
+ SHA3.B[5] = SHA3.rotate64(A[ 6] ^ db, 44);
+ SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20);
+ SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6);
+ SHA3.B[8] = SHA3.rotate64(A[ 1] ^ da, 36);
+ SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55);
+
+ SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43);
+ SHA3.B[11] = SHA3.rotate64(A[ 2] ^ da, 3);
+ SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25);
+ SHA3.B[13] = SHA3.rotate64(A[ 7] ^ db, 10);
+ SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39);
+
+ SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21);
+ SHA3.B[16] = SHA3.rotate64(A[ 8] ^ db, 45);
+ SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8);
+ SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15);
+ SHA3.B[19] = SHA3.rotate64(A[ 3] ^ da, 41);
+
+ SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14);
+ SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61);
+ SHA3.B[22] = SHA3.rotate64(A[ 4] ^ da, 18);
+ SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56);
+ SHA3.B[24] = SHA3.rotate64(A[ 9] ^ db, 2);
+ }
+ else
+ {
+ /* ρ and π steps, with last two part of θ */
+ SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1));
+ SHA3.B[1] = SHA3.rotate(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1)), 28);
+ SHA3.B[2] = SHA3.rotate(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1)), 1);
+ SHA3.B[3] = SHA3.rotate(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1)), 27);
+ SHA3.B[4] = SHA3.rotate(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1)), 62);
+
+ SHA3.B[5] = SHA3.rotate(A[ 6] ^ db, 44);
+ SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20);
+ SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6);
+ SHA3.B[8] = SHA3.rotate(A[ 1] ^ da, 36);
+ SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55);
+
+ SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43);
+ SHA3.B[11] = SHA3.rotate(A[ 2] ^ da, 3);
+ SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25);
+ SHA3.B[13] = SHA3.rotate(A[ 7] ^ db, 10);
+ SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39);
+
+ SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21);
+ SHA3.B[16] = SHA3.rotate(A[ 8] ^ db, 45);
+ SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8);
+ SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15);
+ SHA3.B[19] = SHA3.rotate(A[ 3] ^ da, 41);
+
+ SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14);
+ SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61);
+ SHA3.B[22] = SHA3.rotate(A[ 4] ^ da, 18);
+ SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56);
+ SHA3.B[24] = SHA3.rotate(A[ 9] ^ db, 2);
+ }
+
+ /* ξ step */
+ for (long i = 0; i < 15; i++)
+ A[i ] = SHA3.B[i ] ^ ((~(SHA3.B[i + 5])) & SHA3.B[i + 10]);
+ for (long i = 0; i < 5; i++)
+ {
+ A[i + 15] = SHA3.B[i + 15] ^ ((~(SHA3.B[i + 20])) & SHA3.B[i ]);
+ A[i + 20] = SHA3.B[i + 20] ^ ((~(SHA3.B[i ])) & SHA3.B[i + 5]);
+ }
+
+ /* ι step */
+ A[0] ^= rc;
+}
+
+
+/**
+ * Perform Keccak-f function
+ *
+ * @param A The current state
+ */
+static void keccakF(llong* A)
+{
+ if (SHA3.nr == 24)
+ for (long i = 0; i < SHA3.nr; i++)
+ SHA3.keccakFRound(A, SHA3.RC[i]);
+ else
+ for (long i = 0; i < SHA3.nr; i++)
+ SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod);
+}
+
+
+/**
+ * Convert a chunk of byte:s to a word
+ *
+ * @param message The message
+ * @param rr Bitrate in bytes
+ * @param ww Word size in bytes
+ * @param off The offset in the message
+ * @return Lane
+ */
+static llong toLane(byte* message, long rr, long ww, long off)
+{
+ llong rc = 0;
+ long n = Math.min(message.length, rr);
+ for (long i = off + ww - 1; i >= off; i--)
+ rc = (rc << 8) | ((i < n) ? (llong)(message[i] & 255) : 0L);
+ return rc;
+}
+
+
+/**
+ * Convert a chunk of byte:s to a 64-bit word
+ *
+ * @param message The message
+ * @param rr Bitrate in bytes
+ * @param off The offset in the message
+ * @return Lane
+ */
+static llong toLane64(byte* message, long rr, long off)
+{
+ long n = Math.min(message.length, rr);
+ return ((off + 7 < n) ? ((llong)(message[off + 7] & 255) << 56) : 0L) |
+ ((off + 6 < n) ? ((llong)(message[off + 6] & 255) << 48) : 0L) |
+ ((off + 5 < n) ? ((llong)(message[off + 5] & 255) << 40) : 0L) |
+ ((off + 4 < n) ? ((llong)(message[off + 4] & 255) << 32) : 0L) |
+ ((off + 3 < n) ? ((llong)(message[off + 3] & 255) << 24) : 0L) |
+ ((off + 2 < n) ? ((llong)(message[off + 2] & 255) << 16) : 0L) |
+ ((off + 1 < n) ? ((llong)(message[off + 1] & 255) << 8) : 0L) |
+ ((off < n) ? ((llong)(message[off] & 255)) : 0L);
+}
+
+
+/**
+ * pad 10*1
+ *
+ * @param msg The message to pad
+ * @parm len The length of the message
+ * @param r The bitrate
+ * @return The message padded
+ */
+static byte* pad10star1(byte* msg, long len, long r)
+{
+ long nrf = len >> 3;
+ long nbrf = len & 7;
+ long ll = len % r;
+
+ byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)));
+
+ byte* message;
+ if ((r - 8 <= ll) && (ll <= r - 2))
+ {
+ message = new byte[len = nrf + 1];
+ message[nrf] = (byte)(b ^ 128);
+ }
+ else
+ {
+ len = (nrf + 1) << 3;
+ len = ((len - (len % r) + (r - 8)) >> 3) + 1;
+ message = new byte[len];
+ message[nrf] = b;
+ //for (llong i = nrf + 1; i < len; i++)
+ // message[i + nrf] = 0;
+ message[len - 1] = -128;
+ }
+ System.arraycopy(msg, 0, message, 0, nrf);
+
+ return message;
+}
+
+
+/**
+ * Initialise Keccak sponge
+ *
+ * @param r The bitrate
+ * @param c The capacity
+ * @param n The output size
+ */
+extern void initialise(long r, long c, long n)
+{
+ SHA3.r = r;
+ SHA3.c = c;
+ SHA3.n = n;
+ SHA3.b = r + c;
+ SHA3.w = SHA3.b / 25;
+ SHA3.l = SHA3.lb(SHA3.w);
+ SHA3.nr = 12 + (SHA3.l << 1);
+ SHA3.wmod = (1L << SHA3.w) - 1L;
+ SHA3.S = new llong[25];
+ SHA3.M = new byte[(SHA3.r * SHA3.b) >> 2];
+ SHA3.mptr = 0;
+}
+
+
+/**
+ * Absorb the more of the message message to the Keccak sponge
+ *
+ * @param msg The partial message
+ */
+extern void update(byte* msg)
+{
+ update(msg, msg.length);
+}
+
+
+/**
+ * Absorb the more of the message message to the Keccak sponge
+ *
+ * @param msg The partial message
+ * @param msglen The length of the partial message
+ */
+extern void update(byte* msg, long msglen)
+{
+ long rr = SHA3.r >> 3;
+ long ww = SHA3.w >> 3;
+
+ if (SHA3.mptr + msglen > SHA3.M.length)
+ System.arraycopy(SHA3.M, 0, SHA3.M = new byte[(SHA3.M.length + msglen) << 1], 0, SHA3.mptr);
+ System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen);
+ long len = SHA3.mptr += msglen;
+ len -= len % ((SHA3.r * SHA3.b) >> 3);
+ byte* message;
+ System.arraycopy(SHA3.M, 0, message = new byte[len], 0, len);
+ System.arraycopy(SHA3.M, len, SHA3.M, 0, SHA3.mptr -= len);
+
+ /* Absorbing phase */
+ if (ww == 8)
+ for (long i = 0; i < len; i += rr)
+ {
+ SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0);
+ SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8);
+ SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16);
+ SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24);
+ SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32);
+ SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40);
+ SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48);
+ SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56);
+ SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64);
+ SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72);
+ SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80);
+ SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88);
+ SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96);
+ SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104);
+ SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112);
+ SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120);
+ SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128);
+ SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136);
+ SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144);
+ SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152);
+ SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160);
+ SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168);
+ SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176);
+ SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184);
+ SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192);
+ SHA3.keccakF(SHA3.S);
+ }
+ else
+ for (long i = 0; i < len; i += rr)
+ {
+ SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 );
+ SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w);
+ SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w);
+ SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w);
+ SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w);
+ SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w);
+ SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w);
+ SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w);
+ SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w);
+ SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w);
+ SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w);
+ SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w);
+ SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w);
+ SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w);
+ SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w);
+ SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w);
+ SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w);
+ SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w);
+ SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w);
+ SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w);
+ SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w);
+ SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w);
+ SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w);
+ SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w);
+ SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w);
+ SHA3.keccakF(SHA3.S);
+ }
+}
+
+
+/**
+ * Squeeze the Keccak sponge
+ */
+extern byte* digest()
+{
+ return digest(null);
+}
+
+
+/**
+ * Absorb the last part of the message and squeeze the Keccak sponge
+ *
+ * @param msg The rest of the message
+ */
+extern byte* digest(byte* msg)
+{
+ return digest(msg, msg == null ? 0 : msg.length);
+}
+
+
+/**
+ * Absorb the last part of the message and squeeze the Keccak sponge
+ *
+ * @param msg The rest of the message
+ * @param msglen The length of the partial message
+ */
+extern byte* digest(byte* msg, long msglen)
+{
+ byte* message;
+ if ((msg == null) || (msglen == 0))
+ message = SHA3.pad10star1(SHA3.M, SHA3.mptr, SHA3.r);
+ else
+ {
+ if (SHA3.mptr + msglen > SHA3.M.length)
+ System.arraycopy(SHA3.M, 0, SHA3.M = new byte[SHA3.M.length + msglen], 0, SHA3.mptr);
+ System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen);
+ message = SHA3.pad10star1(SHA3.M, SHA3.mptr + msglen, SHA3.r);
+ }
+ SHA3.M = null;
+ long len = message.length;
+ byte* rc = new byte[(SHA3.n + 7) >> 3];
+ long ptr = 0;
+
+ long rr = SHA3.r >> 3;
+ long nn = SHA3.n >> 3;
+ long ww = SHA3.w >> 3;
+
+ /* Absorbing phase */
+ if (ww == 8)
+ for (long i = 0; i < len; i += rr)
+ {
+ SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0);
+ SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8);
+ SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16);
+ SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24);
+ SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32);
+ SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40);
+ SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48);
+ SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56);
+ SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64);
+ SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72);
+ SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80);
+ SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88);
+ SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96);
+ SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104);
+ SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112);
+ SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120);
+ SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128);
+ SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136);
+ SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144);
+ SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152);
+ SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160);
+ SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168);
+ SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176);
+ SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184);
+ SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192);
+ SHA3.keccakF(SHA3.S);
+ }
+ else
+ for (long i = 0; i < len; i += rr)
+ {
+ SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 );
+ SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w);
+ SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w);
+ SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w);
+ SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w);
+ SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w);
+ SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w);
+ SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w);
+ SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w);
+ SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w);
+ SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w);
+ SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w);
+ SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w);
+ SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w);
+ SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w);
+ SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w);
+ SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w);
+ SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w);
+ SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w);
+ SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w);
+ SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w);
+ SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w);
+ SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w);
+ SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w);
+ SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w);
+ SHA3.keccakF(SHA3.S);
+ }
+
+ /* Squeezing phase */
+ long olen = SHA3.n;
+ long j = 0;
+ long ni = Math.min(25, rr);
+ while (olen > 0)
+ {
+ long i = 0;
+ while ((i < ni) && (j < nn))
+ {
+ llong v = SHA3.S[(i % 5) * 5 + i / 5];
+ for (long _ = 0; _ < ww; _++)
+ {
+ if (j < nn)
+ {
+ rc[ptr] = (byte)v;
+ ptr += 1;
+ }
+ v >>= 8;
+ j += 1;
+ }
+ i += 1;
+ }
+ olen -= SHA3.r;
+ if (olen > 0)
+ SHA3.keccakF(S);
+ }
+ return rc;
+}
+