aboutsummaryrefslogtreecommitdiffstats
path: root/vala
diff options
context:
space:
mode:
authorMattias Andrée <maandree@operamail.com>2013-02-10 11:07:24 +0100
committerMattias Andrée <maandree@operamail.com>2013-02-10 11:07:24 +0100
commit3a76b06d5bd3c9bb4259259b9eeff6ae442ad3fa (patch)
treec540bb3e771dfcca84fd768251d2bad7c086d04d /vala
parentcopy the c version and add the jni methods (not implemented) (diff)
downloadsha3sum-3a76b06d5bd3c9bb4259259b9eeff6ae442ad3fa.tar.gz
sha3sum-3a76b06d5bd3c9bb4259259b9eeff6ae442ad3fa.tar.bz2
sha3sum-3a76b06d5bd3c9bb4259259b9eeff6ae442ad3fa.tar.xz
beginning of vala implementation
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to 'vala')
-rw-r--r--vala/sha3sum.vala826
1 files changed, 826 insertions, 0 deletions
diff --git a/vala/sha3sum.vala b/vala/sha3sum.vala
new file mode 100644
index 0000000..4cd84f5
--- /dev/null
+++ b/vala/sha3sum.vala
@@ -0,0 +1,826 @@
+/**
+ * sha3sum – SHA-3 (Keccak) checksum calculator
+ *
+ * Copyright © 2013 Mattias Andrée (maandree@member.fsf.org)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+
+/**
+ * Copy an array segment into an array
+ *
+ * @param src The source array
+ * @param soff The source array offset
+ * @param dest The destination array
+ * @param doff The destination array offset
+ * @param length The number of elements to copy
+ */
+static void arraycopy(int8[] src, int soff, int8[] dest, int doff, int length)
+{
+ if (soff + length < doff)
+ for (int i = 0; i < length; i++)
+ dest[doff + i] = src[soff + i];
+ else
+ for (int i = length - 1; i >= 0; i--)
+ dest[doff + i] = src[soff + i];
+}
+
+
+/**
+ * SHA-3/Keccak hash algorithm implementation
+ *
+ * @author Mattias Andrée <a href="mailto:maandree@member.fsf.org">maandree@member.fsf.org</a>
+ */
+class SHA3 : Object
+{
+ /**
+ * Round contants
+ */
+ private static const int64[] RC = {
+ 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L,
+ 0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L,
+ 0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL,
+ 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L,
+ 0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL,
+ 0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L};
+
+ /**
+ * Keccak-f round temporary
+ */
+ private static int64[] B = new int64[25];
+
+ /**
+ * Keccak-f round temporary
+ */
+ private static int64[] C = new int64[5];
+
+
+ /**
+ * The bitrate
+ */
+ private static int r = 0;
+
+ /**
+ * The capacity
+ */
+ private static int c = 0;
+
+ /**
+ * The output size
+ */
+ private static int n = 0;
+
+ /**
+ * The state size
+ */
+ private static int b = 0;
+
+ /**
+ * The word size
+ */
+ private static int w = 0;
+
+ /**
+ * The word mask
+ */
+ private static int64 wmod = 0;
+
+ /**
+ * ℓ, the binary logarithm of the word size
+ */
+ private static int l = 0;
+
+ /**
+ * 12 + 2ℓ, the number of rounds
+ */
+ private static int nr = 0;
+
+
+ /**
+ * The current state
+ */
+ private static int64[] S = null;
+
+ /**
+ * Left over water to fill the sponge with at next update
+ */
+ private static int8[] M = null;
+
+ /**
+ * Pointer for {@link #M}
+ */
+ private static int mptr = 0;
+
+
+
+ /**
+ * Hidden constructor
+ */
+ private SHA3()
+ {
+ // Inhibit instansiation
+ }
+
+
+
+ /**
+ * Rotate a word
+ *
+ * @param x The value to rotate
+ * @param n Rotation steps, may not be 0
+ * @return The value rotated
+ */
+ private static int64 rotate(int64 x, int n)
+ {
+ int64 m = n % SHA3.w;
+ return (((x >> (SHA3.w - m)) & ((1 << m) - 1)) + (x << m)) & SHA3.wmod;
+ }
+
+
+ /**
+ * Rotate a 64-bit word
+ *
+ * @param x The value to rotate
+ * @param n Rotation steps, may not be 0
+ * @return The value rotated
+ */
+ private static int64 rotate64(int64 x, int n)
+ {
+ return ((x >> (64 - n)) & ((1 << n) - 1)) + (x << n);
+ }
+
+
+ /**
+ * Binary logarithm
+ *
+ * @param x The value of which to calculate the binary logarithm
+ * @return The binary logarithm
+ */
+ private static int lb(int x)
+ {
+ return (((x & 0xFF00) == 0 ? 0 : 8) +
+ ((x & 0xF0F0) == 0 ? 0 : 4)) +
+ (((x & 0xCCCC) == 0 ? 0 : 2) +
+ ((x & 0xAAAA) == 0 ? 0 : 1));
+ }
+
+ /**
+ * Perform one round of computation
+ *
+ * @param A The current state
+ * @param rc Round constant
+ */
+ private static void keccakFRound(int64[] A, int64 rc)
+ {
+ /* θ step (step 1 of 3) */
+ for (int i = 0, j = 0; i < 5; i++, j += 5)
+ SHA3.C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4];
+
+ int64 da, db, dc, dd, de;
+
+ if (SHA3.w == 64)
+ {
+ /* ρ and π steps, with last two part of θ */
+ SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1));
+ SHA3.B[1] = SHA3.rotate64(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1)), 28);
+ SHA3.B[2] = SHA3.rotate64(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1)), 1);
+ SHA3.B[3] = SHA3.rotate64(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1)), 27);
+ SHA3.B[4] = SHA3.rotate64(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1)), 62);
+
+ SHA3.B[5] = SHA3.rotate64(A[ 6] ^ db, 44);
+ SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20);
+ SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6);
+ SHA3.B[8] = SHA3.rotate64(A[ 1] ^ da, 36);
+ SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55);
+
+ SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43);
+ SHA3.B[11] = SHA3.rotate64(A[ 2] ^ da, 3);
+ SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25);
+ SHA3.B[13] = SHA3.rotate64(A[ 7] ^ db, 10);
+ SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39);
+
+ SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21);
+ SHA3.B[16] = SHA3.rotate64(A[ 8] ^ db, 45);
+ SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8);
+ SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15);
+ SHA3.B[19] = SHA3.rotate64(A[ 3] ^ da, 41);
+
+ SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14);
+ SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61);
+ SHA3.B[22] = SHA3.rotate64(A[ 4] ^ da, 18);
+ SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56);
+ SHA3.B[24] = SHA3.rotate64(A[ 9] ^ db, 2);
+ }
+ else
+ {
+ /* ρ and π steps, with last two part of θ */
+ SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1));
+ SHA3.B[1] = SHA3.rotate(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1)), 28);
+ SHA3.B[2] = SHA3.rotate(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1)), 1);
+ SHA3.B[3] = SHA3.rotate(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1)), 27);
+ SHA3.B[4] = SHA3.rotate(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1)), 62);
+
+ SHA3.B[5] = SHA3.rotate(A[ 6] ^ db, 44);
+ SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20);
+ SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6);
+ SHA3.B[8] = SHA3.rotate(A[ 1] ^ da, 36);
+ SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55);
+
+ SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43);
+ SHA3.B[11] = SHA3.rotate(A[ 2] ^ da, 3);
+ SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25);
+ SHA3.B[13] = SHA3.rotate(A[ 7] ^ db, 10);
+ SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39);
+
+ SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21);
+ SHA3.B[16] = SHA3.rotate(A[ 8] ^ db, 45);
+ SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8);
+ SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15);
+ SHA3.B[19] = SHA3.rotate(A[ 3] ^ da, 41);
+
+ SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14);
+ SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61);
+ SHA3.B[22] = SHA3.rotate(A[ 4] ^ da, 18);
+ SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56);
+ SHA3.B[24] = SHA3.rotate(A[ 9] ^ db, 2);
+ }
+
+ /* ξ step */
+ for (int i = 0; i < 15; i++)
+ A[i ] = SHA3.B[i ] ^ ((~(SHA3.B[i + 5])) & SHA3.B[i + 10]);
+ for (int i = 0; i < 5; i++)
+ {
+ A[i + 15] = SHA3.B[i + 15] ^ ((~(SHA3.B[i + 20])) & SHA3.B[i ]);
+ A[i + 20] = SHA3.B[i + 20] ^ ((~(SHA3.B[i ])) & SHA3.B[i + 5]);
+ }
+
+ /* ι step */
+ A[0] ^= rc;
+ }
+
+
+ /**
+ * Perform Keccak-f function
+ *
+ * @param A The current state
+ */
+ private static void keccakF(int64[] A)
+ {
+ if (SHA3.nr == 24)
+ for (int i = 0; i < 24; i++)
+ SHA3.keccakFRound(A, SHA3.RC[i]);
+ else
+ for (int i = 0; i < SHA3.nr; i++)
+ SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod);
+ }
+
+
+ /**
+ * Convert a chunk of byte:s to a word
+ *
+ * @param message The message
+ * @param rr Bitrate in bytes
+ * @param ww Word size in bytes
+ * @param off The offset in the message
+ * @return Lane
+ */
+ private static int64 toLane(int8[] message, int rr, int ww, int off)
+ {
+ int64 rc = 0;
+ int n = message.length < rr ? message.length : rr;
+ for (int i = off + ww - 1; i >= off; i--)
+ rc = (rc << 8) | ((i < n) ? (int64)(message[i] & 255) : 0L);
+ return rc;
+ }
+
+
+ /**
+ * Convert a chunk of byte:s to a 64-bit word
+ *
+ * @param message The message
+ * @param rr Bitrate in bytes
+ * @param off The offset in the message
+ * @return Lane
+ */
+ private static int64 toLane64(int8[] message, int rr, int off)
+ {
+ int n = message.length < rr ? message.length : rr;
+ return ((off + 7 < n) ? ((int64)(message[off + 7] & 255) << 56) : 0L) |
+ ((off + 6 < n) ? ((int64)(message[off + 6] & 255) << 48) : 0L) |
+ ((off + 5 < n) ? ((int64)(message[off + 5] & 255) << 40) : 0L) |
+ ((off + 4 < n) ? ((int64)(message[off + 4] & 255) << 32) : 0L) |
+ ((off + 3 < n) ? ((int64)(message[off + 3] & 255) << 24) : 0L) |
+ ((off + 2 < n) ? ((int64)(message[off + 2] & 255) << 16) : 0L) |
+ ((off + 1 < n) ? ((int64)(message[off + 1] & 255) << 8) : 0L) |
+ ((off < n) ? ((int64)(message[off ] & 255) ) : 0L);
+ }
+
+
+ /**
+ * pad 10*1
+ *
+ * @param msg The message to pad
+ * @parm len The length of the message
+ * @param r The bitrate
+ * @return The message padded
+ */
+ private static int8[] pad10star1(int8[] msg, int len, int r)
+ {
+ int nrf = (len <<= 3) >> 3;
+ int nbrf = len & 7;
+ int ll = len % r;
+
+ int8 b = (int8)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)));
+
+ int8[] message;
+ if ((r - 8 <= ll) && (ll <= r - 2))
+ {
+ message = new int8[len = nrf + 1];
+ message[nrf] = (int8)(b ^ 128);
+ }
+ else
+ {
+ len = (nrf + 1) << 3;
+ len = ((len - (len % r) + (r - 8)) >> 3) + 1;
+ message = new int8[len];
+ message[nrf] = b;
+ message[len - 1] = (int8)(-128);
+ }
+ arraycopy(msg, 0, message, 0, nrf);
+
+ return message;
+ }
+
+
+ /**
+ * Initialise Keccak sponge
+ *
+ * @param r The bitrate
+ * @param c The capacity
+ * @param n The output size
+ */
+ public static void initialise(int r, int c, int n)
+ {
+ SHA3.r = r;
+ SHA3.c = c;
+ SHA3.n = n;
+ SHA3.b = r + c;
+ SHA3.w = SHA3.b / 25;
+ SHA3.l = SHA3.lb(SHA3.w);
+ SHA3.nr = 12 + (SHA3.l << 1);
+ SHA3.wmod = w == 64 ? -1L : (1L << SHA3.w) - 1L;
+ SHA3.S = new int64[25];
+ SHA3.M = new int8[(SHA3.r * SHA3.b) >> 2];
+ SHA3.mptr = 0;
+ }
+
+
+ /**
+ * Absorb the more of the message message to the Keccak sponge
+ *
+ * @param msg The partial message
+ * @param msglen The length of the partial message
+ */
+ public static void update(int8[] msg, int msglen)
+ {
+ int rr = SHA3.r >> 3;
+ int ww = SHA3.w >> 3;
+
+ if (SHA3.mptr + msglen > SHA3.M.length)
+ arraycopy(SHA3.M, 0, SHA3.M = new int8[(SHA3.M.length + msglen) << 1], 0, SHA3.mptr);
+ arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen);
+ int len = SHA3.mptr += msglen;
+ len -= len % ((SHA3.r * SHA3.b) >> 3);
+ int8[] message;
+ arraycopy(SHA3.M, 0, message = new int8[len], 0, len);
+ arraycopy(SHA3.M, len, SHA3.M, 0, SHA3.mptr -= len);
+
+ /* Absorbing phase */
+ if (ww == 8)
+ for (int i = 0; i < len; i += rr)
+ {
+ SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0);
+ SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8);
+ SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16);
+ SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24);
+ SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32);
+ SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40);
+ SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48);
+ SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56);
+ SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64);
+ SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72);
+ SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80);
+ SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88);
+ SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96);
+ SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104);
+ SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112);
+ SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120);
+ SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128);
+ SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136);
+ SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144);
+ SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152);
+ SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160);
+ SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168);
+ SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176);
+ SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184);
+ SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192);
+ SHA3.keccakF(SHA3.S);
+ }
+ else
+ for (int i = 0; i < len; i += rr)
+ {
+ SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 );
+ SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w);
+ SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w);
+ SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w);
+ SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w);
+ SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w);
+ SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w);
+ SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w);
+ SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w);
+ SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w);
+ SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w);
+ SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w);
+ SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w);
+ SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w);
+ SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w);
+ SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w);
+ SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w);
+ SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w);
+ SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w);
+ SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w);
+ SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w);
+ SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w);
+ SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w);
+ SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w);
+ SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w);
+ SHA3.keccakF(SHA3.S);
+ }
+ }
+
+
+ /**
+ * Absorb the last part of the message and squeeze the Keccak sponge
+ *
+ * @param msg The rest of the message
+ * @param msglen The length of the partial message
+ */
+ public static int8[] digest(int8[] msg, int msglen)
+ {
+ int8[] message;
+ if ((msg == null) || (msglen == 0))
+ message = SHA3.pad10star1(SHA3.M, SHA3.mptr, SHA3.r);
+ else
+ {
+ if (SHA3.mptr + msglen > SHA3.M.length)
+ arraycopy(SHA3.M, 0, SHA3.M = new int8[SHA3.M.length + msglen], 0, SHA3.mptr);
+ arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen);
+ message = SHA3.pad10star1(SHA3.M, SHA3.mptr + msglen, SHA3.r);
+ }
+ SHA3.M = null;
+ int len = message.length;
+ int8[] rc = new int8[(SHA3.n + 7) >> 3];
+ int ptr = 0;
+
+ int rr = SHA3.r >> 3;
+ int nn = SHA3.n >> 3;
+ int ww = SHA3.w >> 3;
+
+ /* Absorbing phase */
+ if (ww == 8)
+ for (int i = 0; i < len; i += rr)
+ {
+ SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0);
+ SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8);
+ SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16);
+ SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24);
+ SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32);
+ SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40);
+ SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48);
+ SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56);
+ SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64);
+ SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72);
+ SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80);
+ SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88);
+ SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96);
+ SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104);
+ SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112);
+ SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120);
+ SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128);
+ SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136);
+ SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144);
+ SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152);
+ SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160);
+ SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168);
+ SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176);
+ SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184);
+ SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192);
+ SHA3.keccakF(SHA3.S);
+ }
+ else
+ for (int i = 0; i < len; i += rr)
+ {
+ SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 );
+ SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w);
+ SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w);
+ SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w);
+ SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w);
+ SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w);
+ SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w);
+ SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w);
+ SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w);
+ SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w);
+ SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w);
+ SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w);
+ SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w);
+ SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w);
+ SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w);
+ SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w);
+ SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w);
+ SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w);
+ SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w);
+ SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w);
+ SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w);
+ SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w);
+ SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w);
+ SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w);
+ SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w);
+ SHA3.keccakF(SHA3.S);
+ }
+
+ /* Squeezing phase */
+ int olen = SHA3.n;
+ int j = 0;
+ int ni = 25 < rr ? 25 : rr;
+ while (olen > 0)
+ {
+ int i = 0;
+ while ((i < ni) && (j < nn))
+ {
+ int64 v = SHA3.S[(i % 5) * 5 + i / 5];
+ for (int _ = 0; _ < ww; _++)
+ {
+ if (j < nn)
+ {
+ rc[ptr] = (int8)v;
+ ptr += 1;
+ }
+ v >>= 8;
+ j += 1;
+ }
+ i += 1;
+ }
+ olen -= SHA3.r;
+ if (olen > 0)
+ SHA3.keccakF(S);
+ }
+ return rc;
+ }
+
+}
+
+
+/**
+ * This is the main entry point of the program
+ *
+ * @param args Command line arguments
+ */
+static int main(string[] cmdargs)
+{
+ string cmd = cmdargs[0];
+ string[] argv = new string[cmdargs.length - 1];
+ arraycopy(cmdargs, 1, argv, 0, argv.length);
+
+ if (cmd.indexOf('/') >= 0)
+ cmd = cmd.substring(cmd.lastIndexOf('/') + 1);
+ if (cmd.endsWith(".jar"))
+ cmd = cmd.substring(0, cmd.length() - 4);
+ cmd = cmd.intern();
+
+ int _o, o = _o = 512; /* --outputsize */
+ if (cmd == "sha3-224sum") o = _o = 224;
+ else if (cmd == "sha3-256sum") o = _o = 256;
+ else if (cmd == "sha3-384sum") o = _o = 384;
+ else if (cmd == "sha3-512sum") o = _o = 512;
+ int _s, s = _s = 1600; /* --statesize */
+ int _r, r = _r = s - (o << 1); /* --bitrate */
+ int _c, c = _c = s - r; /* --capacity */
+ int _w, w = _w = s / 25; /* --wordsize */
+ int _i, i = _i = 1; /* --iterations */
+ bool binary = false;
+
+ string[] files = new string[argv.length + 1];
+ int fptr = 0;
+ bool dashed = false;
+ string[] linger = null;
+
+ string[] args = new string[argv.length + 1];
+ arraycopy(argv, 0, args, 0, argv.length);
+ for (int a = 0, an = args.length; a < an; a++)
+ { string arg = args[a];
+ arg = arg == null ? null : arg.intern();
+ if (linger != null)
+ {
+ linger[0] = linger[0].intern();
+ if ((linger[0] == "-h") || (linger[0] == "--help"))
+ {
+ printf("\n");
+ printf("SHA-3/Keccak checksum calculator\n");
+ printf("\n");
+ printf("USAGE: sha3sum [option...] < file\n");
+ printf(" sha3sum [option...] file...\n");
+ printf("\n");
+ printf("\n");
+ printf("OPTIONS:\n");
+ printf(" -r BITRATE\n");
+ printf(" --bitrate The bitrate to use for SHA-3. (default: " + _r + ")\n");
+ printf(" \n");
+ printf(" -c CAPACITY\n");
+ printf(" --capacity The capacity to use for SHA-3. (default: " + _c + ")\n");
+ printf(" \n");
+ printf(" -w WORDSIZE\n");
+ printf(" --wordsize The word size to use for SHA-3. (default: " + _w + ")\n");
+ printf(" \n");
+ printf(" -o OUTPUTSIZE\n");
+ printf(" --outputsize The output size to use for SHA-3. (default: " + _o + ")\n");
+ printf(" \n");
+ printf(" -s STATESIZE\n");
+ printf(" --statesize The state size to use for SHA-3. (default: " + _s + ")\n");
+ printf(" \n");
+ printf(" -i ITERATIONS\n");
+ printf(" --iterations The number of hash iterations to run. (default: " + _i + ")\n");
+ printf(" \n");
+ printf(" -b\n");
+ printf(" --binary Print the checksum in binary, rather than hexadecimal.\n");
+ printf("\n");
+ printf("\n");
+ printf("COPYRIGHT:\n");
+ printf("\n");
+ printf("Copyright © 2013 Mattias Andrée (maandree@member.fsf.org)\n");
+ printf("\n");
+ printf("This program is free software: you can redistribute it and/or modify\n");
+ printf("it under the terms of the GNU General Public License as published by\n");
+ printf("the Free Software Foundation, either version 3 of the License, or\n");
+ printf("(at your option) any later version.\n");
+ printf("\n");
+ printf("This program is distributed in the hope that it will be useful,\n");
+ printf("but WITHOUT ANY WARRANTY; without even the implied warranty of\n");
+ printf("MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n");
+ printf("GNU General Public License for more details.\n");
+ printf("\n");
+ printf("You should have received a copy of the GNU General Public License\n");
+ printf("along with this program. If not, see <http://www.gnu.org/licenses/>.\n");
+ printf("\n");
+ return 2;
+ }
+ else
+ {
+ if (linger[1] == null)
+ {
+ linger[1] = arg;
+ arg = null;
+ }
+ if ((linger[0] == "-r") || (linger[0] == "--bitrate"))
+ o = (s - (r = Integer.parseInt(linger[1]))) >> 1;
+ else if ((linger[0] == "-c") || (linger[0] == "--capacity"))
+ r = s - (c = Integer.parseInt(linger[1]));
+ else if ((linger[0] == "-w") || (linger[0] == "--wordsize"))
+ s = (w = Integer.parseInt(linger[1])) * 25;
+ else if ((linger[0] == "-o") || (linger[0] == "--outputsize"))
+ r = s - ((o = Integer.parseInt(linger[1])) << 1);
+ else if ((linger[0] == "-s") || (linger[0] == "--statesize"))
+ r = (s = Integer.parseInt(linger[1])) - (o << 1);
+ else if ((linger[0] == "-i") || (linger[0] == "--iterations"))
+ i = Integer.parseInt(linger[1]);
+ else
+ {
+ printf("%s: unrecognised option: %s\n", cmd, linger[0]);
+ return 1;
+ }
+ }
+ linger = null;
+ if (arg == null)
+ continue;
+ }
+ if (arg == null)
+ continue;
+ if (dashed)
+ files[fptr++] = arg == "-" ? null : arg;
+ else if (arg == "--")
+ dashed = true;
+ else if (arg == "-")
+ files[fptr++] = null;
+ else if (arg.startsWith("--"))
+ if (arg.indexOf('=') >= 0)
+ linger = new string[] { arg.substring(0, arg.indexOf('=')), arg.substring(arg.indexOf('=') + 1) };
+ else
+ if (arg == "--binary")
+ binary = true;
+ else
+ linger = new string[] { arg, null };
+ else if (arg.startsWith("-"))
+ {
+ arg = arg.substring(1);
+ if (arg.charAt(0) == 'b')
+ {
+ binary = true;
+ arg = arg.substring(1);
+ }
+ else if (arg.length() == 1)
+ linger = new string[] { "-" + arg, null };
+ else
+ linger = new string[] { "-" + arg.charAt(0), arg.substring(1) };
+ }
+ else
+ files[fptr++] = arg;
+ }
+
+ if (fptr == 0)
+ files[fptr++] = null;
+ if (i < 1)
+ {
+ System.err.println(cmd + ": sorry, I will only do at least one iteration!");
+ System.exit(3);
+ }
+
+ int8[] stdin = null;
+ bool fail = false;
+ string filename;
+
+ for (int f = 0; f < fptr; f++)
+ { if (((filename = files[f]) == null) && (stdin != null))
+ { System.out.write(stdin);
+ continue;
+ }
+ string rc = "";
+ string fn = filename == null ? "/dev/stdin" : filename;
+ FileInputStream file = null;
+ try
+ {
+ file = new FileInputStream(fn);
+ SHA3.initialise(r, c, o);
+ int blksize = 4096; /** XXX os.stat(os.path.realpath(fn)).st_size; **/
+ int8[] chunk = new int8[blksize];
+ for (;;)
+ {
+ int read = file.read(chunk, 0, blksize);
+ if (read <= 0)
+ break;
+ SHA3.update(chunk, read);
+ }
+ int8[] bs = SHA3.digest();
+ for (int _ = 1; _ < i; _++)
+ {
+ SHA3.initialise(r, c, o);
+ bs = SHA3.digest(bs);
+ }
+ if (binary)
+ { if (filename == null)
+ stdin = bs;
+ System.out.write(bs);
+ System.out.flush();
+ }
+ else
+ { for (int b = 0, bn = bs.length; b < bn; b++)
+ { rc += "0123456789ABCDEF".charAt((bs[b] >> 4) & 15);
+ rc += "0123456789ABCDEF".charAt(bs[b] & 15);
+ }
+ rc += " " + (filename == null ? "-" : filename) + "\n";
+ if (filename == null)
+ stdin = rc.getBytes("UTF-8");
+ System.out.print(rc);
+ System.out.flush();
+ }
+ }
+ catch
+ { System.err.println(cmd + ": cannot read file: " + filename);
+ fail = true;
+ }
+ finally
+ { if (file != null)
+ try
+ { file.close();
+ }
+ catch
+ { //ignore
+ } } }
+
+ System.out.flush();
+ if (fail)
+ return 5;
+
+ return 0;
+}
+