diff options
author | Mattias Andrée <maandree@operamail.com> | 2013-02-05 01:10:43 +0100 |
---|---|---|
committer | Mattias Andrée <maandree@operamail.com> | 2013-02-05 01:10:43 +0100 |
commit | 6989496981ef818257b519144bf0ce8dff9358d1 (patch) | |
tree | 3817b96225be63c80535c575e882f942d3b42c5c /sha3sum.py | |
parent | support for all versions of java (diff) | |
download | sha3sum-6989496981ef818257b519144bf0ce8dff9358d1.tar.gz sha3sum-6989496981ef818257b519144bf0ce8dff9358d1.tar.bz2 sha3sum-6989496981ef818257b519144bf0ce8dff9358d1.tar.xz |
move inte directories based on language
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to 'sha3sum.py')
-rwxr-xr-x | sha3sum.py | 726 |
1 files changed, 0 insertions, 726 deletions
diff --git a/sha3sum.py b/sha3sum.py deleted file mode 100755 index f7e297a..0000000 --- a/sha3sum.py +++ /dev/null @@ -1,726 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -''' -sha3sum – SHA-3 (Keccak) checksum calculator - -Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) - -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program. If not, see <http://www.gnu.org/licenses/>. -''' - -import sys -import os - - -class SHA3: - ''' - SHA-3/Keccak hash algorithm implementation - - @author Mattias Andrée (maandree@member.fsf.org) - ''' - - - RC=[0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000, - 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, - 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A, - 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003, - 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A, - 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008] - ''' - :list<int> Round contants - ''' - - B = [0] * 25 - ''' - :list<int> Keccak-f round temporary - ''' - - C = [0] * 5 - ''' - :list<int> Keccak-f round temporary - ''' - - - (r, c, n, b, w, wmod, l, nr) = (0, 0, 0, 0, 0, 0, 0, 0) - ''' - r:int The bitrate - c:int The capacity - n:int The output size - b:int The state size - w:int The word size - wmod:int The word mask - l:int ℓ, the binary logarithm of the word size - nr:int 12 + 2ℓ, the number of rounds - ''' - - S = None - ''' - :list<int> The current state - ''' - - M = None - ''' - :bytes Left over water to fill the sponge with at next update - ''' - - - - @staticmethod - def rotate(x, n): - ''' - Rotate a word - - @param x:int The value to rotate - @param n:int Rotation steps - @return :int The value rotated - ''' - m = n % SHA3.w - return ((x >> (SHA3.w - m)) + (x << m)) & SHA3.wmod - - - @staticmethod - def rotate64(x, n): - ''' - Rotate a 64-bit word - - @param x:int The value to rotate - @param n:int Rotation steps - @return :int The value rotated - ''' - return ((x >> (SHA3.w - n)) + (x << n)) & 0xFFFFFFFFFFFFFFFF - - - @staticmethod - def lb(x): - ''' - Binary logarithm - - @param x:int The value of which to calculate the binary logarithm - @return :int The binary logarithm - ''' - return ((0 if (x & 0xFF00) == 0 else 8) + (0 if (x & 0xF0F0) == 0 else 4)) + ((0 if (x & 0xCCCC) == 0 else 2) + (0 if (x & 0xAAAA) == 0 else 1)) - - - @staticmethod - def keccakFRound(A, rc): - ''' - Perform one round of computation - - @param A:list<int> The current state - @param rc:int Round constant - ''' - if SHA3.w == 64: - # θ step (step 1 and 2 of 3) - SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4] - SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14] - db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1) - SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24] - dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1) - SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9] - da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1) - SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19] - dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1) - de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1) - - # ρ and π steps, with last part of θ - SHA3.B[0] = SHA3.rotate64(A[0] ^ da, 0) - SHA3.B[1] = SHA3.rotate64(A[15] ^ dd, 28) - SHA3.B[2] = SHA3.rotate64(A[5] ^ db, 1) - SHA3.B[3] = SHA3.rotate64(A[20] ^ de, 27) - SHA3.B[4] = SHA3.rotate64(A[10] ^ dc, 62) - - SHA3.B[5] = SHA3.rotate64(A[6] ^ db, 44) - SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20) - SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6) - SHA3.B[8] = SHA3.rotate64(A[1] ^ da, 36) - SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55) - - SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43) - SHA3.B[11] = SHA3.rotate64(A[2] ^ da, 3) - SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25) - SHA3.B[13] = SHA3.rotate64(A[7] ^ db, 10) - SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39) - - SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21) - SHA3.B[16] = SHA3.rotate64(A[8] ^ db, 45) - SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8) - SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15) - SHA3.B[19] = SHA3.rotate64(A[3] ^ da, 41) - - SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14) - SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61) - SHA3.B[22] = SHA3.rotate64(A[4] ^ da, 18) - SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56) - SHA3.B[24] = SHA3.rotate64(A[9] ^ db, 2) - else: - # θ step (step 1 and 2 of 3) - SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4] - SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14] - db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1) - SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24] - dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1) - SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9] - da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1) - SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19] - dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1) - de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1) - - # ρ and π steps, with last part of θ - SHA3.B[0] = SHA3.rotate(A[0] ^ da, 0) - SHA3.B[1] = SHA3.rotate(A[15] ^ dd, 28) - SHA3.B[2] = SHA3.rotate(A[5] ^ db, 1) - SHA3.B[3] = SHA3.rotate(A[20] ^ de, 27) - SHA3.B[4] = SHA3.rotate(A[10] ^ dc, 62) - - SHA3.B[5] = SHA3.rotate(A[6] ^ db, 44) - SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20) - SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6) - SHA3.B[8] = SHA3.rotate(A[1] ^ da, 36) - SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55) - - SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43) - SHA3.B[11] = SHA3.rotate(A[2] ^ da, 3) - SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25) - SHA3.B[13] = SHA3.rotate(A[7] ^ db, 10) - SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39) - - SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21) - SHA3.B[16] = SHA3.rotate(A[8] ^ db, 45) - SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8) - SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15) - SHA3.B[19] = SHA3.rotate(A[3] ^ da, 41) - - SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14) - SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61) - SHA3.B[22] = SHA3.rotate(A[4] ^ da, 18) - SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56) - SHA3.B[24] = SHA3.rotate(A[9] ^ db, 2) - - # ξ step - A[0] = SHA3.B[0] ^ ((~(SHA3.B[5])) & SHA3.B[10]) - A[1] = SHA3.B[1] ^ ((~(SHA3.B[6])) & SHA3.B[11]) - A[2] = SHA3.B[2] ^ ((~(SHA3.B[7])) & SHA3.B[12]) - A[3] = SHA3.B[3] ^ ((~(SHA3.B[8])) & SHA3.B[13]) - A[4] = SHA3.B[4] ^ ((~(SHA3.B[9])) & SHA3.B[14]) - - A[5] = SHA3.B[5] ^ ((~(SHA3.B[10])) & SHA3.B[15]) - A[6] = SHA3.B[6] ^ ((~(SHA3.B[11])) & SHA3.B[16]) - A[7] = SHA3.B[7] ^ ((~(SHA3.B[12])) & SHA3.B[17]) - A[8] = SHA3.B[8] ^ ((~(SHA3.B[13])) & SHA3.B[18]) - A[9] = SHA3.B[9] ^ ((~(SHA3.B[14])) & SHA3.B[19]) - - A[10] = SHA3.B[10] ^ ((~(SHA3.B[15])) & SHA3.B[20]) - A[11] = SHA3.B[11] ^ ((~(SHA3.B[16])) & SHA3.B[21]) - A[12] = SHA3.B[12] ^ ((~(SHA3.B[17])) & SHA3.B[22]) - A[13] = SHA3.B[13] ^ ((~(SHA3.B[18])) & SHA3.B[23]) - A[14] = SHA3.B[14] ^ ((~(SHA3.B[19])) & SHA3.B[24]) - - A[15] = SHA3.B[15] ^ ((~(SHA3.B[20])) & SHA3.B[0]) - A[16] = SHA3.B[16] ^ ((~(SHA3.B[21])) & SHA3.B[1]) - A[17] = SHA3.B[17] ^ ((~(SHA3.B[22])) & SHA3.B[2]) - A[18] = SHA3.B[18] ^ ((~(SHA3.B[23])) & SHA3.B[3]) - A[19] = SHA3.B[19] ^ ((~(SHA3.B[24])) & SHA3.B[4]) - - A[20] = SHA3.B[20] ^ ((~(SHA3.B[0])) & SHA3.B[5]) - A[21] = SHA3.B[21] ^ ((~(SHA3.B[1])) & SHA3.B[6]) - A[22] = SHA3.B[22] ^ ((~(SHA3.B[2])) & SHA3.B[7]) - A[23] = SHA3.B[23] ^ ((~(SHA3.B[3])) & SHA3.B[8]) - A[24] = SHA3.B[24] ^ ((~(SHA3.B[4])) & SHA3.B[9]) - - # ι step - A[0] ^= rc - - - @staticmethod - def keccakF(A): - ''' - Perform Keccak-f function - - @param A:list<int> The current state - ''' - if (SHA3.nr == 24): - SHA3.keccakFRound(A, 0x0000000000000001) - SHA3.keccakFRound(A, 0x0000000000008082) - SHA3.keccakFRound(A, 0x800000000000808A) - SHA3.keccakFRound(A, 0x8000000080008000) - SHA3.keccakFRound(A, 0x000000000000808B) - SHA3.keccakFRound(A, 0x0000000080000001) - SHA3.keccakFRound(A, 0x8000000080008081) - SHA3.keccakFRound(A, 0x8000000000008009) - SHA3.keccakFRound(A, 0x000000000000008A) - SHA3.keccakFRound(A, 0x0000000000000088) - SHA3.keccakFRound(A, 0x0000000080008009) - SHA3.keccakFRound(A, 0x000000008000000A) - SHA3.keccakFRound(A, 0x000000008000808B) - SHA3.keccakFRound(A, 0x800000000000008B) - SHA3.keccakFRound(A, 0x8000000000008089) - SHA3.keccakFRound(A, 0x8000000000008003) - SHA3.keccakFRound(A, 0x8000000000008002) - SHA3.keccakFRound(A, 0x8000000000000080) - SHA3.keccakFRound(A, 0x000000000000800A) - SHA3.keccakFRound(A, 0x800000008000000A) - SHA3.keccakFRound(A, 0x8000000080008081) - SHA3.keccakFRound(A, 0x8000000000008080) - SHA3.keccakFRound(A, 0x0000000080000001) - SHA3.keccakFRound(A, 0x8000000080008008) - else: - for i in range(SHA3.nr): - SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod) - - - @staticmethod - def toLane(message, rr, ww, off): - ''' - Convert a chunk of char:s to a word - - @param message:bytes The message - @param rr:int Bitrate in bytes - @param ww:int Word size in bytes - @param off:int The offset in the message - @return :int Lane - ''' - rc = 0 - i = off + ww - 1 - n = min(len(message), rr) - while i >= off: - rc = (rc << 8) | (message[i] if (i < n) else 0) - i -= 1 - return rc - - - @staticmethod - def toLane64(message, rr, off): - ''' - Convert a chunk of char:s to a 64-bit word - - @param message:bytes The message - @param rr:int Bitrate in bytes - @param off:int The offset in the message - @return :int Lane - ''' - rc = 0 - n = min(len(message), rr) - - return ((message[off + 7] << 56) if (off + 7 < n) else 0) | ((message[off + 6] << 48) if (off + 6 < n) else 0) | ((message[off + 5] << 40) if (off + 5 < n) else 0) | ((message[off + 4] << 32) if (off + 4 < n) else 0) | ((message[off + 3] << 24) if (off + 3 < n) else 0) | ((message[off + 2] << 16) if (off + 2 < n) else 0) | ((message[off + 1] << 8) if (off + 1 < n) else 0) | ((message[off]) if (off < n) else 0) - - - @staticmethod - def pad10star1(msg, r): - ''' - pad 10*1 - - @param msg:bytes The message to pad - @param r:int The bitrate - @return :str The message padded - ''' - nnn = len(msg) - - nrf = nnn >> 3 - nbrf = nnn & 7 - ll = nnn % r - - bbbb = 1 if nbrf == 0 else ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)) - - message = None - if ((r - 8 <= ll) and (ll <= r - 2)): - message = [bbbb ^ 128] - else: - nnn = (nrf + 1) << 3 - nnn = ((nnn - (nnn % r) + (r - 8)) >> 3) + 1 - message = [0] * (nnn - nrf) - message[0] = bbbb - nnn -= nrf - #for i in range(1, nnn): - # message[i] = 0 - message[nnn - 1] = 0x80 - - return msg[:nrf] + bytes(message) - - - @staticmethod - def initialise(r, c, n): - ''' - Initialise Keccak sponge - - @param r:int The bitrate - @param c:int The capacity - @param n:int The output size - ''' - SHA3.r = r - SHA3.c = c - SHA3.n = n - SHA3.b = r + c - SHA3.w = SHA3.b // 25 - SHA3.l = SHA3.lb(SHA3.w) - SHA3.nr = 12 + (SHA3.l << 1) - SHA3.wmod = (1 << SHA3.w) - 1 - SHA3.S = [0] * 25 - SHA3.M = bytes([]) - - - @staticmethod - def update(msg): - ''' - Absorb the more of the message message to the Keccak sponge - - @param msg:bytes The partial message - ''' - rr = SHA3.r >> 3 - ww = SHA3.w >> 3 - - SHA3.M += msg - nnn = len(SHA3.M) - nnn -= nnn % ((SHA3.r * SHA3.b) >> 3) - message = SHA3.M[:nnn] - SHA3.M = SHA3.M[nnn:] - - # Absorbing phase - if ww == 8: - for i in range(0, nnn, rr): - SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0) - SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 8) - SHA3.S[10] ^= SHA3.toLane64(message, rr, 16) - SHA3.S[15] ^= SHA3.toLane64(message, rr, 24) - SHA3.S[20] ^= SHA3.toLane64(message, rr, 32) - SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 40) - SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48) - SHA3.S[11] ^= SHA3.toLane64(message, rr, 56) - SHA3.S[16] ^= SHA3.toLane64(message, rr, 64) - SHA3.S[21] ^= SHA3.toLane64(message, rr, 72) - SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 80) - SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 88) - SHA3.S[12] ^= SHA3.toLane64(message, rr, 96) - SHA3.S[17] ^= SHA3.toLane64(message, rr, 104) - SHA3.S[22] ^= SHA3.toLane64(message, rr, 112) - SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 120) - SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 128) - SHA3.S[13] ^= SHA3.toLane64(message, rr, 136) - SHA3.S[18] ^= SHA3.toLane64(message, rr, 144) - SHA3.S[23] ^= SHA3.toLane64(message, rr, 152) - SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 160) - SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 168) - SHA3.S[14] ^= SHA3.toLane64(message, rr, 176) - SHA3.S[19] ^= SHA3.toLane64(message, rr, 184) - SHA3.S[24] ^= SHA3.toLane64(message, rr, 192) - SHA3.keccakF(SHA3.S) - message = message[rr:] - else: - for i in range(0, nnn, rr): - SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, 0) - SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, ww) - SHA3.S[10] ^= SHA3.toLane(message, rr, ww, 2 * ww) - SHA3.S[15] ^= SHA3.toLane(message, rr, ww, 3 * ww) - SHA3.S[20] ^= SHA3.toLane(message, rr, ww, 4 * ww) - SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, 5 * ww) - SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, 6 * ww) - SHA3.S[11] ^= SHA3.toLane(message, rr, ww, 7 * ww) - SHA3.S[16] ^= SHA3.toLane(message, rr, ww, 8 * ww) - SHA3.S[21] ^= SHA3.toLane(message, rr, ww, 9 * ww) - SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, 10 * ww) - SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, 11 * ww) - SHA3.S[12] ^= SHA3.toLane(message, rr, ww, 12 * ww) - SHA3.S[17] ^= SHA3.toLane(message, rr, ww, 13 * ww) - SHA3.S[22] ^= SHA3.toLane(message, rr, ww, 14 * ww) - SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, 15 * ww) - SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, 16 * ww) - SHA3.S[13] ^= SHA3.toLane(message, rr, ww, 17 * ww) - SHA3.S[18] ^= SHA3.toLane(message, rr, ww, 18 * ww) - SHA3.S[23] ^= SHA3.toLane(message, rr, ww, 19 * ww) - SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, 20 * ww) - SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, 21 * ww) - SHA3.S[14] ^= SHA3.toLane(message, rr, ww, 22 * ww) - SHA3.S[19] ^= SHA3.toLane(message, rr, ww, 23 * ww) - SHA3.S[24] ^= SHA3.toLane(message, rr, ww, 24 * ww) - message = message[rr:] - SHA3.keccakF(SHA3.S) - - - @staticmethod - def digest(msg = None): - ''' - Absorb the last part of the message and squeeze the Keccak sponge - - @param msg:bytes The rest of the message - ''' - if msg is None: - msg = bytes([]) - message = SHA3.pad10star1(SHA3.M + msg, SHA3.r) - SHA3.M = None - nnn = len(message) - rc = [0] * ((SHA3.n + 7) >> 3) - ptr = 0 - - rr = SHA3.r >> 3 - nn = SHA3.n >> 3 - ww = SHA3.w >> 3 - - # Absorbing phase - if ww == 8: - for i in range(0, nnn, rr): - SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0) - SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 8) - SHA3.S[10] ^= SHA3.toLane64(message, rr, 16) - SHA3.S[15] ^= SHA3.toLane64(message, rr, 24) - SHA3.S[20] ^= SHA3.toLane64(message, rr, 32) - SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 40) - SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48) - SHA3.S[11] ^= SHA3.toLane64(message, rr, 56) - SHA3.S[16] ^= SHA3.toLane64(message, rr, 64) - SHA3.S[21] ^= SHA3.toLane64(message, rr, 72) - SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 80) - SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 88) - SHA3.S[12] ^= SHA3.toLane64(message, rr, 96) - SHA3.S[17] ^= SHA3.toLane64(message, rr, 104) - SHA3.S[22] ^= SHA3.toLane64(message, rr, 112) - SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 120) - SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 128) - SHA3.S[13] ^= SHA3.toLane64(message, rr, 136) - SHA3.S[18] ^= SHA3.toLane64(message, rr, 144) - SHA3.S[23] ^= SHA3.toLane64(message, rr, 152) - SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 160) - SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 168) - SHA3.S[14] ^= SHA3.toLane64(message, rr, 176) - SHA3.S[19] ^= SHA3.toLane64(message, rr, 184) - SHA3.S[24] ^= SHA3.toLane64(message, rr, 192) - SHA3.keccakF(SHA3.S) - message = message[rr:] - else: - for i in range(0, nnn, rr): - SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, 0) - SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, ww) - SHA3.S[10] ^= SHA3.toLane(message, rr, ww, 2 * ww) - SHA3.S[15] ^= SHA3.toLane(message, rr, ww, 3 * ww) - SHA3.S[20] ^= SHA3.toLane(message, rr, ww, 4 * ww) - SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, 5 * ww) - SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, 6 * ww) - SHA3.S[11] ^= SHA3.toLane(message, rr, ww, 7 * ww) - SHA3.S[16] ^= SHA3.toLane(message, rr, ww, 8 * ww) - SHA3.S[21] ^= SHA3.toLane(message, rr, ww, 9 * ww) - SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, 10 * ww) - SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, 11 * ww) - SHA3.S[12] ^= SHA3.toLane(message, rr, ww, 12 * ww) - SHA3.S[17] ^= SHA3.toLane(message, rr, ww, 13 * ww) - SHA3.S[22] ^= SHA3.toLane(message, rr, ww, 14 * ww) - SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, 15 * ww) - SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, 16 * ww) - SHA3.S[13] ^= SHA3.toLane(message, rr, ww, 17 * ww) - SHA3.S[18] ^= SHA3.toLane(message, rr, ww, 18 * ww) - SHA3.S[23] ^= SHA3.toLane(message, rr, ww, 19 * ww) - SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, 20 * ww) - SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, 21 * ww) - SHA3.S[14] ^= SHA3.toLane(message, rr, ww, 22 * ww) - SHA3.S[19] ^= SHA3.toLane(message, rr, ww, 23 * ww) - SHA3.S[24] ^= SHA3.toLane(message, rr, ww, 24 * ww) - message = message[rr:] - SHA3.keccakF(SHA3.S) - - # Squeezing phase - olen = SHA3.n - j = 0 - ni = min(25, rr) - while (olen > 0): - i = 0 - while (i < ni) and (j < nn): - v = SHA3.S[(i % 5) * 5 + i // 5] - for _ in range(ww): - if (j < nn): - rc[ptr] = v & 255 - ptr += 1 - v >>= 8 - j += 1 - i += 1 - olen -= SHA3.r - if olen > 0: - SHA3.keccakF(S) - - return bytes(rc) - - - -if __name__ == '__main__': - cmd = sys.argv[0] - args = sys.argv[1:] - if '/' in cmd: - cmd = cmd[cmd.rfind('/') + 1:] - if cmd.endswith('.py'): - cmd = cmd[:-3] - - o = 512 # --outputsize - if cmd == 'sha3-224sum': o = 224 - elif cmd == 'sha3-256sum': o = 256 - elif cmd == 'sha3-384sum': o = 384 - elif cmd == 'sha3-512sum': o = 512 - s = 1600 # --statesize - r = s - (o << 1) # --bitrate - c = s - r # --capacity - w = s // 25 # --wordsize - i = 1 # --iterations - binary = False - - (_r, _c, _w, _o, _s, _i) = (r, c, w, o, s, i) - - files = [] - dashed = False - linger = None - - for arg in args + [None]: - if linger is not None: - if linger[0] in ('-h', '--help'): - sys.stderr.buffer.write((''' -SHA-3/Keccak checksum calculator - -USAGE: sha3sum [option...] < file - sha3sum [option...] file... - - -OPTIONS: - -r BITRATE - --bitrate The bitrate to use for SHA-3. (default: %d) - - -c CAPACITY - --capacity The capacity to use for SHA-3. (default: %d) - - -w WORDSIZE - --wordsize The word size to use for SHA-3. (default: %d) - - -o OUTPUTSIZE - --outputsize The output size to use for SHA-3. (default: %d) - - -s STATESIZE - --statesize The state size to use for SHA-3. (default: %d) - - -i ITERATIONS - --iterations The number of hash iterations to run. (default: %d) - - -b - --binary Print the checksum in binary, rather than hexadecimal. - - -COPYRIGHT: - -Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) - -This program is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program. If not, see <http://www.gnu.org/licenses/>. - -''' % (_r, _c, _w, _o, _s, _i)).encode('utf-8')) - sys.stderr.buffer.flush() - exit(2) - else: - if linger[1] is None: - linger[1] = arg - arg = None - if linger[0] in ('-r', '--bitrate'): - r = int(linger[1]) - o = (s - r) >> 1 - elif linger[0] in ('-c', '--capacity'): - c = int(linger[1]) - r = s - c - elif linger[0] in ('-w', '--wordsize'): - w = int(linger[1]) - s = w * 25 - elif linger[0] in ('-o', '--outputsize'): - o = int(linger[1]) - r = s - (o << 1) - elif linger[0] in ('-s', '--statesize'): - s = int(linger[1]) - r = s - (o << 1) - elif linger[0] in ('-i', '--iterations'): - i = int(linger[1]) - else: - sys.stderr.buffer.write((sys.argv[0] + ': unrecognised option: ' + linger[0] + '\n').encode('utf-8')) - sys.stdout.buffer.flush() - exit(1) - linger = None - if arg is None: - continue - if arg is None: - continue - if dashed: - files.append(None if arg == '-' else arg) - elif arg == '--': - dashed = True - elif arg == '-': - files.append(None) - elif arg.startswith('--'): - if '=' in arg: - linger = (arg[:arg.find('=')], arg[arg.find('=') + 1:]) - else: - if arg == '--binary': - binary = True - else: - linger = [arg, None] - elif arg.startswith('-'): - arg = arg[1:] - if arg[0] == 'b': - binary = True - arg = arg[1:] - elif len(arg) == 1: - linger = ['-' + arg, None] - else: - linger = ['-' + arg[0], arg[1:]] - else: - files.append(arg) - - if len(files) == 0: - files.append(None) - if i < 1: - sys.stdout.buffer.write((sys.argv[0] + ': sorry, I will only do at least one iteration!\n').encode('utf-8')) - sys.stdout.buffer.flush() - exit(3) - stdin = None - for filename in files: - if (filename is None) and (stdin is not None): - print(stdin) - continue - rc = '' - fn = '/dev/stdin' if filename is None else filename - with open(fn, 'rb') as file: - SHA3.initialise(r, c, o) - blksize = os.stat(os.path.realpath(fn)).st_size - while True: - chunk = file.read(blksize) - if len(chunk) == 0: - break - SHA3.update(chunk) - bs = SHA3.digest(file.read()) - for _ in range(1, i): - SHA3.initialise(r, c, o) - bs = SHA3.digest(bs) - if binary: - if filename is None: - stdin = bs - sys.stdout.buffer.write(bs) - sys.stdout.buffer.flush() - else: - for b in bs: - rc += "0123456789ABCDEF"[b >> 4] - rc += "0123456789ABCDEF"[b & 15] - rc += ' ' + ('-' if filename is None else filename) + '\n' - if filename is None: - stdin = rc - sys.stdout.buffer.write(rc.encode('UTF-8')) - sys.stdout.buffer.flush() - - |