diff options
author | Mattias Andrée <maandree@operamail.com> | 2013-02-05 09:17:12 +0100 |
---|---|---|
committer | Mattias Andrée <maandree@operamail.com> | 2013-02-05 09:17:12 +0100 |
commit | 071fb2c780b28da84b018454b7b777b63175930f (patch) | |
tree | e63c92ec023e2763b5ec6fba504389069c629bab /java/SHA3.java | |
parent | m (diff) | |
download | sha3sum-071fb2c780b28da84b018454b7b777b63175930f.tar.gz sha3sum-071fb2c780b28da84b018454b7b777b63175930f.tar.bz2 sha3sum-071fb2c780b28da84b018454b7b777b63175930f.tar.xz |
misc
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to 'java/SHA3.java')
-rw-r--r-- | java/SHA3.java | 613 |
1 files changed, 0 insertions, 613 deletions
diff --git a/java/SHA3.java b/java/SHA3.java deleted file mode 100644 index 5b4796e..0000000 --- a/java/SHA3.java +++ /dev/null @@ -1,613 +0,0 @@ -/** - * sha3sum – SHA-3 (Keccak) checksum calculator - * - * Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) - * - * This program is free software: you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation, either version 3 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see <http://www.gnu.org/licenses/>. - */ - - -/** - * SHA-3/Keccak hash algorithm implementation - * - * @author Mattias Andrée <a href="mailto:maandree@member.fsf.org">maandree@member.fsf.org</a> - */ -public class SHA3 -{ - private static String hex(long x) - { - String a = "00000000" + Long.toString((x >>> 32) & ((1L << 32) - 1), 16); - String b = "00000000" + Long.toString(x & ((1L << 32) - 1), 16); - a = a.substring(a.length() - 8); - b = b.substring(b.length() - 8); - return a + b; - } - /** - * Round contants - */ - private static final long[] RC = { - 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L, - 0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L, - 0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL, - 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L, - 0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL, - 0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L}; - - /** - * Keccak-f round temporary - */ - private static long[] B = new long[25]; - - /** - * Keccak-f round temporary - */ - private static long[] C = new long[5]; - - - /** - * The bitrate - */ - private static int r = 0; - - /** - * The capacity - */ - private static int c = 0; - - /** - * The output size - */ - private static int n = 0; - - /** - * The state size - */ - private static int b = 0; - - /** - * The word size - */ - private static int w = 0; - - /** - * The word mask - */ - private static long wmod = 0; - - /** - * ℓ, the binary logarithm of the word size - */ - private static int l = 0; - - /** - * 12 + 2ℓ, the number of rounds - */ - private static int nr = 0; - - - /** - * The current state - */ - private static long[] S = null; - - /** - * Left over water to fill the sponge with at next update - */ - private static byte[] M = null; - - /** - * Pointer for {@link #M} - */ - private static int mptr = 0; - - - - /** - * Hidden constructor - */ - private SHA3() - { - // Inhibit instansiation - } - - - - /** - * Rotate a word - * - * @param x The value to rotate - * @param n Rotation steps, may not be 0 - * @return The value rotated - */ - private static long rotate(long x, int n) - { - long m; - return ((x >>> (SHA3.w - (m = n % SHA3.w))) + (x << m)) & SHA3.wmod; - } - - - /** - * Rotate a 64-bit word - * - * @param x The value to rotate - * @param n Rotation steps, may not be 0 - * @return The value rotated - */ - private static long rotate64(long x, int n) - { - return (x >>> (SHA3.w - n)) + (x << n); - } - - - /** - * Binary logarithm - * - * @param x The value of which to calculate the binary logarithm - * @return The binary logarithm - */ - private static int lb(int x) - { - return (((x & 0xFF00) == 0 ? 0 : 8) + - ((x & 0xF0F0) == 0 ? 0 : 4)) + - (((x & 0xCCCC) == 0 ? 0 : 2) + - ((x & 0xAAAA) == 0 ? 0 : 1)); - } - - /** - * Perform one round of computation - * - * @param A The current state - * @param rc Round constant - */ - private static void keccakFRound(long[] A, long rc) - { - /* θ step (step 1 of 3) */ - for (int i = 0, j = 0; i < 5; i++, j += 5) - SHA3.C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4]; - - long da, db, dc, dd, de; - - if (SHA3.w == 64) - { - /* ρ and π steps, with last two part of θ */ - SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1)); - SHA3.B[1] = SHA3.rotate64(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1)), 28); - SHA3.B[2] = SHA3.rotate64(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1)), 1); - SHA3.B[3] = SHA3.rotate64(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1)), 27); - SHA3.B[4] = SHA3.rotate64(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1)), 62); - - SHA3.B[5] = SHA3.rotate64(A[ 6] ^ db, 44); - SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20); - SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6); - SHA3.B[8] = SHA3.rotate64(A[ 1] ^ da, 36); - SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55); - - SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43); - SHA3.B[11] = SHA3.rotate64(A[ 2] ^ da, 3); - SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25); - SHA3.B[13] = SHA3.rotate64(A[ 7] ^ db, 10); - SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39); - - SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21); - SHA3.B[16] = SHA3.rotate64(A[ 8] ^ db, 45); - SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8); - SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15); - SHA3.B[19] = SHA3.rotate64(A[ 3] ^ da, 41); - - SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14); - SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61); - SHA3.B[22] = SHA3.rotate64(A[ 4] ^ da, 18); - SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56); - SHA3.B[24] = SHA3.rotate64(A[ 9] ^ db, 2); - } - else - { - /* ρ and π steps, with last two part of θ */ - SHA3.B[0] = A[ 0] ^ (da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1)); - SHA3.B[1] = SHA3.rotate(A[15] ^ (dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1)), 28); - SHA3.B[2] = SHA3.rotate(A[ 5] ^ (db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1)), 1); - SHA3.B[3] = SHA3.rotate(A[20] ^ (de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1)), 27); - SHA3.B[4] = SHA3.rotate(A[10] ^ (dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1)), 62); - - SHA3.B[5] = SHA3.rotate(A[ 6] ^ db, 44); - SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20); - SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6); - SHA3.B[8] = SHA3.rotate(A[ 1] ^ da, 36); - SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55); - - SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43); - SHA3.B[11] = SHA3.rotate(A[ 2] ^ da, 3); - SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25); - SHA3.B[13] = SHA3.rotate(A[ 7] ^ db, 10); - SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39); - - SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21); - SHA3.B[16] = SHA3.rotate(A[ 8] ^ db, 45); - SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8); - SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15); - SHA3.B[19] = SHA3.rotate(A[ 3] ^ da, 41); - - SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14); - SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61); - SHA3.B[22] = SHA3.rotate(A[ 4] ^ da, 18); - SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56); - SHA3.B[24] = SHA3.rotate(A[ 9] ^ db, 2); - } - - /* ξ step */ - for (int i = 0; i < 15; i++) - A[i ] = SHA3.B[i ] ^ ((~(SHA3.B[i + 5])) & SHA3.B[i + 10]); - for (int i = 0; i < 5; i++) - { - A[i + 15] = SHA3.B[i + 15] ^ ((~(SHA3.B[i + 20])) & SHA3.B[i ]); - A[i + 20] = SHA3.B[i + 20] ^ ((~(SHA3.B[i ])) & SHA3.B[i + 5]); - } - - /* ι step */ - A[0] ^= rc; - } - - - /** - * Perform Keccak-f function - * - * @param A The current state - */ - private static void keccakF(long[] A) - { - if (SHA3.nr == 24) - for (int i = 0; i < SHA3.nr; i++) - SHA3.keccakFRound(A, SHA3.RC[i]); - else - for (int i = 0; i < SHA3.nr; i++) - SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod); - } - - - /** - * Convert a chunk of byte:s to a word - * - * @param message The message - * @param rr Bitrate in bytes - * @param ww Word size in bytes - * @param off The offset in the message - * @return Lane - */ - private static long toLane(byte[] message, int rr, int ww, int off) - { - long rc = 0; - int n = Math.min(message.length, rr); - for (int i = off + ww - 1; i >= off; i--) - rc = (rc << 8) | ((i < n) ? (long)(message[i] & 255) : 0L); - return rc; - } - - - /** - * Convert a chunk of byte:s to a 64-bit word - * - * @param message The message - * @param rr Bitrate in bytes - * @param off The offset in the message - * @return Lane - */ - private static long toLane64(byte[] message, int rr, int off) - { - int n = Math.min(message.length, rr); - return ((off + 7 < n) ? ((long)(message[off + 7] & 255) << 56) : 0L) | - ((off + 6 < n) ? ((long)(message[off + 6] & 255) << 48) : 0L) | - ((off + 5 < n) ? ((long)(message[off + 5] & 255) << 40) : 0L) | - ((off + 4 < n) ? ((long)(message[off + 4] & 255) << 32) : 0L) | - ((off + 3 < n) ? ((long)(message[off + 3] & 255) << 24) : 0L) | - ((off + 2 < n) ? ((long)(message[off + 2] & 255) << 16) : 0L) | - ((off + 1 < n) ? ((long)(message[off + 1] & 255) << 8) : 0L) | - ((off < n) ? ((long)(message[off] & 255)) : 0L); - } - - - /** - * pad 10*1 - * - * @param msg The message to pad - * @parm len The length of the message - * @param r The bitrate - * @return The message padded - */ - private static byte[] pad10star1(byte[] msg, int len, int r) - { - int nrf = len >> 3; - int nbrf = len & 7; - int ll = len % r; - - byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf))); - - byte[] message; - if ((r - 8 <= ll) && (ll <= r - 2)) - { - message = new byte[len = nrf + 1]; - message[nrf] = (byte)(b ^ 128); - } - else - { - len = (nrf + 1) << 3; - len = ((len - (len % r) + (r - 8)) >> 3) + 1; - message = new byte[len]; - message[nrf] = b; - //for (long i = nrf + 1; i < len; i++) - // message[i + nrf] = 0; - message[len - 1] = -128; - } - System.arraycopy(msg, 0, message, 0, nrf); - - return message; - } - - - /** - * Initialise Keccak sponge - * - * @param r The bitrate - * @param c The capacity - * @param n The output size - */ - public static void initialise(int r, int c, int n) - { - SHA3.r = r; - SHA3.c = c; - SHA3.n = n; - SHA3.b = r + c; - SHA3.w = SHA3.b / 25; - SHA3.l = SHA3.lb(SHA3.w); - SHA3.nr = 12 + (SHA3.l << 1); - SHA3.wmod = (1L << SHA3.w) - 1L; - SHA3.S = new long[25]; - SHA3.M = new byte[(SHA3.r * SHA3.b) >> 2]; - SHA3.mptr = 0; - } - - - /** - * Absorb the more of the message message to the Keccak sponge - * - * @param msg The partial message - */ - public static void update(byte[] msg) - { - update(msg, msg.length); - } - - - /** - * Absorb the more of the message message to the Keccak sponge - * - * @param msg The partial message - * @param msglen The length of the partial message - */ - public static void update(byte[] msg, int msglen) - { - int rr = SHA3.r >> 3; - int ww = SHA3.w >> 3; - - if (SHA3.mptr + msglen > SHA3.M.length) - System.arraycopy(SHA3.M, 0, SHA3.M = new byte[(SHA3.M.length + msglen) << 1], 0, SHA3.mptr); - System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen); - int len = SHA3.mptr += msglen; - len -= len % ((SHA3.r * SHA3.b) >> 3); - byte[] message; - System.arraycopy(SHA3.M, 0, message = new byte[len], 0, len); - System.arraycopy(SHA3.M, len, SHA3.M, 0, SHA3.mptr -= len); - - /* Absorbing phase */ - if (ww == 8) - for (int i = 0; i < len; i += rr) - { - SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0); - SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8); - SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16); - SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24); - SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32); - SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40); - SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48); - SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56); - SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64); - SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72); - SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80); - SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88); - SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96); - SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104); - SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112); - SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120); - SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128); - SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136); - SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144); - SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152); - SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160); - SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168); - SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176); - SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184); - SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192); - SHA3.keccakF(SHA3.S); - } - else - for (int i = 0; i < len; i += rr) - { - SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 ); - SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w); - SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w); - SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w); - SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w); - SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w); - SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w); - SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w); - SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w); - SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w); - SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w); - SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w); - SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w); - SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w); - SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w); - SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w); - SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w); - SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w); - SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w); - SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w); - SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w); - SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w); - SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w); - SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w); - SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w); - SHA3.keccakF(SHA3.S); - } - } - - - /** - * Squeeze the Keccak sponge - */ - public static byte[] digest() - { - return digest(null); - } - - - /** - * Absorb the last part of the message and squeeze the Keccak sponge - * - * @param msg The rest of the message - */ - public static byte[] digest(byte[] msg) - { - return digest(msg, msg == null ? 0 : msg.length); - } - - - /** - * Absorb the last part of the message and squeeze the Keccak sponge - * - * @param msg The rest of the message - * @param msglen The length of the partial message - */ - public static byte[] digest(byte[] msg, int msglen) - { - byte[] message; - if ((msg == null) || (msglen == 0)) - message = SHA3.pad10star1(SHA3.M, SHA3.mptr, SHA3.r); - else - { - if (SHA3.mptr + msglen > SHA3.M.length) - System.arraycopy(SHA3.M, 0, SHA3.M = new byte[SHA3.M.length + msglen], 0, SHA3.mptr); - System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen); - message = SHA3.pad10star1(SHA3.M, SHA3.mptr + msglen, SHA3.r); - } - SHA3.M = null; - int len = message.length; - byte[] rc = new byte[(SHA3.n + 7) >> 3]; - int ptr = 0; - - int rr = SHA3.r >> 3; - int nn = SHA3.n >> 3; - int ww = SHA3.w >> 3; - - /* Absorbing phase */ - if (ww == 8) - for (int i = 0; i < len; i += rr) - { - SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0); - SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8); - SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16); - SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24); - SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32); - SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40); - SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48); - SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56); - SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64); - SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72); - SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80); - SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88); - SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96); - SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104); - SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112); - SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120); - SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128); - SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136); - SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144); - SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152); - SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160); - SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168); - SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176); - SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184); - SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192); - SHA3.keccakF(SHA3.S); - } - else - for (int i = 0; i < len; i += rr) - { - SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 ); - SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w); - SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w); - SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w); - SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w); - SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w); - SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w); - SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w); - SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w); - SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w); - SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w); - SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w); - SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w); - SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w); - SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w); - SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w); - SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w); - SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w); - SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w); - SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w); - SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w); - SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w); - SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w); - SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w); - SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w); - SHA3.keccakF(SHA3.S); - } - - /* Squeezing phase */ - int olen = SHA3.n; - int j = 0; - int ni = Math.min(25, rr); - while (olen > 0) - { - int i = 0; - while ((i < ni) && (j < nn)) - { - long v = SHA3.S[(i % 5) * 5 + i / 5]; - for (int _ = 0; _ < ww; _++) - { - if (j < nn) - { - rc[ptr] = (byte)v; - ptr += 1; - } - v >>= 8; - j += 1; - } - i += 1; - } - olen -= SHA3.r; - if (olen > 0) - SHA3.keccakF(S); - } - return rc; - } - -} |