aboutsummaryrefslogtreecommitdiffstats
path: root/SHA3.java
diff options
context:
space:
mode:
authorMattias Andrée <maandree@operamail.com>2013-02-05 01:10:43 +0100
committerMattias Andrée <maandree@operamail.com>2013-02-05 01:10:43 +0100
commit6989496981ef818257b519144bf0ce8dff9358d1 (patch)
tree3817b96225be63c80535c575e882f942d3b42c5c /SHA3.java
parentsupport for all versions of java (diff)
downloadsha3sum-6989496981ef818257b519144bf0ce8dff9358d1.tar.gz
sha3sum-6989496981ef818257b519144bf0ce8dff9358d1.tar.bz2
sha3sum-6989496981ef818257b519144bf0ce8dff9358d1.tar.xz
move inte directories based on language
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to 'SHA3.java')
-rw-r--r--SHA3.java678
1 files changed, 0 insertions, 678 deletions
diff --git a/SHA3.java b/SHA3.java
deleted file mode 100644
index bb1daf9..0000000
--- a/SHA3.java
+++ /dev/null
@@ -1,678 +0,0 @@
-/**
- * sha3sum – SHA-3 (Keccak) checksum calculator
- *
- * Copyright © 2013 Mattias Andrée (maandree@member.fsf.org)
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-
-/**
- * SHA-3/Keccak hash algorithm implementation
- *
- * @author Mattias Andrée <a href="mailto:maandree@member.fsf.org">maandree@member.fsf.org</a>
- */
-public class SHA3
-{
- private static String hex(long x)
- {
- String a = "00000000" + Long.toString((x >>> 32) & ((1L << 32) - 1), 16);
- String b = "00000000" + Long.toString(x & ((1L << 32) - 1), 16);
- a = a.substring(a.length() - 8);
- b = b.substring(b.length() - 8);
- return a + b;
- }
- /**
- * Round contants
- */
- private static final long[] RC = {
- 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L,
- 0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L,
- 0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL,
- 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L,
- 0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL,
- 0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L};
-
- /**
- * Keccak-f round temporary
- */
- private static long[] B = new long[25];
-
- /**
- * Keccak-f round temporary
- */
- private static long[] C = new long[5];
-
-
- /**
- * The bitrate
- */
- private static int r = 0;
-
- /**
- * The capacity
- */
- private static int c = 0;
-
- /**
- * The output size
- */
- private static int n = 0;
-
- /**
- * The state size
- */
- private static int b = 0;
-
- /**
- * The word size
- */
- private static int w = 0;
-
- /**
- * The word mask
- */
- private static long wmod = 0;
-
- /**
- * ℓ, the binary logarithm of the word size
- */
- private static int l = 0;
-
- /**
- * 12 + 2ℓ, the number of rounds
- */
- private static int nr = 0;
-
-
- /**
- * The current state
- */
- private static long[] S = null;
-
- /**
- * Left over water to fill the sponge with at next update
- */
- private static byte[] M = null;
-
- /**
- * Pointer for {@link #M}
- */
- private static int mptr = 0;
-
-
-
- /**
- * Hidden constructor
- */
- private SHA3()
- {
- // Inhibit instansiation
- }
-
-
-
- /**
- * Rotate a word
- *
- * @param x The value to rotate
- * @param n Rotation steps, may not be 0
- * @return The value rotated
- */
- private static long rotate(long x, int n)
- {
- long m = n % SHA3.w;
- return ((x >>> (SHA3.w - m)) + (x << m)) & SHA3.wmod;
- }
-
-
- /**
- * Rotate a 64-bit word
- *
- * @param x The value to rotate
- * @param n Rotation steps, may not be 0
- * @return The value rotated
- */
- private static long rotate64(long x, int n)
- {
- return (x >>> (SHA3.w - n)) + (x << n);
- }
-
-
- /**
- * Binary logarithm
- *
- * @param x The value of which to calculate the binary logarithm
- * @return The binary logarithm
- */
- private static int lb(int x)
- {
- return (((x & 0xFF00) == 0 ? 0 : 8) +
- ((x & 0xF0F0) == 0 ? 0 : 4)) +
- (((x & 0xCCCC) == 0 ? 0 : 2) +
- ((x & 0xAAAA) == 0 ? 0 : 1));
- }
-
- /**
- * Perform one round of computation
- *
- * @param A The current state
- * @param rc Round constant
- */
- private static void keccakFRound(long[] A, long rc)
- {
- if (SHA3.w == 64)
- {
- /* θ step (step 1 and 2 of 3) */
- SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4];
- SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14];
- long db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1);
- SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24];
- long dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1);
- SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9];
- long da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1);
- SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19];
- long dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1);
- long de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1);
-
- /* ρ and π steps, with last part of θ */
- SHA3.B[0] = A[0] ^ da;
- SHA3.B[1] = SHA3.rotate64(A[15] ^ dd, 28);
- SHA3.B[2] = SHA3.rotate64(A[5] ^ db, 1);
- SHA3.B[3] = SHA3.rotate64(A[20] ^ de, 27);
- SHA3.B[4] = SHA3.rotate64(A[10] ^ dc, 62);
-
- SHA3.B[5] = SHA3.rotate64(A[6] ^ db, 44);
- SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20);
- SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6);
- SHA3.B[8] = SHA3.rotate64(A[1] ^ da, 36);
- SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55);
-
- SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43);
- SHA3.B[11] = SHA3.rotate64(A[2] ^ da, 3);
- SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25);
- SHA3.B[13] = SHA3.rotate64(A[7] ^ db, 10);
- SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39);
-
- SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21);
- SHA3.B[16] = SHA3.rotate64(A[8] ^ db, 45);
- SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8);
- SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15);
- SHA3.B[19] = SHA3.rotate64(A[3] ^ da, 41);
-
- SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14);
- SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61);
- SHA3.B[22] = SHA3.rotate64(A[4] ^ da, 18);
- SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56);
- SHA3.B[24] = SHA3.rotate64(A[9] ^ db, 2);
- }
- else
- {
- /* θ step (step 1 and 2 of 3) */
- SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4];
- SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14];
- long db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1);
- SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24];
- long dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1);
- SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9];
- long da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1);
- SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19];
- long dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1);
- long de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1);
-
- /*ρ and π steps, with last part of θ */
- SHA3.B[0] = A[0] ^ da;
- SHA3.B[1] = SHA3.rotate(A[15] ^ dd, 28);
- SHA3.B[2] = SHA3.rotate(A[5] ^ db, 1);
- SHA3.B[3] = SHA3.rotate(A[20] ^ de, 27);
- SHA3.B[4] = SHA3.rotate(A[10] ^ dc, 62);
-
- SHA3.B[5] = SHA3.rotate(A[6] ^ db, 44);
- SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20);
- SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6);
- SHA3.B[8] = SHA3.rotate(A[1] ^ da, 36);
- SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55);
-
- SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43);
- SHA3.B[11] = SHA3.rotate(A[2] ^ da, 3);
- SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25);
- SHA3.B[13] = SHA3.rotate(A[7] ^ db, 10);
- SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39);
-
- SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21);
- SHA3.B[16] = SHA3.rotate(A[8] ^ db, 45);
- SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8);
- SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15);
- SHA3.B[19] = SHA3.rotate(A[3] ^ da, 41);
-
- SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14);
- SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61);
- SHA3.B[22] = SHA3.rotate(A[4] ^ da, 18);
- SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56);
- SHA3.B[24] = SHA3.rotate(A[9] ^ db, 2);
- }
-
- /* ξ step */
- A[0] = SHA3.B[0] ^ ((~(SHA3.B[5])) & SHA3.B[10]);
- A[1] = SHA3.B[1] ^ ((~(SHA3.B[6])) & SHA3.B[11]);
- A[2] = SHA3.B[2] ^ ((~(SHA3.B[7])) & SHA3.B[12]);
- A[3] = SHA3.B[3] ^ ((~(SHA3.B[8])) & SHA3.B[13]);
- A[4] = SHA3.B[4] ^ ((~(SHA3.B[9])) & SHA3.B[14]);
-
- A[5] = SHA3.B[5] ^ ((~(SHA3.B[10])) & SHA3.B[15]);
- A[6] = SHA3.B[6] ^ ((~(SHA3.B[11])) & SHA3.B[16]);
- A[7] = SHA3.B[7] ^ ((~(SHA3.B[12])) & SHA3.B[17]);
- A[8] = SHA3.B[8] ^ ((~(SHA3.B[13])) & SHA3.B[18]);
- A[9] = SHA3.B[9] ^ ((~(SHA3.B[14])) & SHA3.B[19]);
-
- A[10] = SHA3.B[10] ^ ((~(SHA3.B[15])) & SHA3.B[20]);
- A[11] = SHA3.B[11] ^ ((~(SHA3.B[16])) & SHA3.B[21]);
- A[12] = SHA3.B[12] ^ ((~(SHA3.B[17])) & SHA3.B[22]);
- A[13] = SHA3.B[13] ^ ((~(SHA3.B[18])) & SHA3.B[23]);
- A[14] = SHA3.B[14] ^ ((~(SHA3.B[19])) & SHA3.B[24]);
-
- A[15] = SHA3.B[15] ^ ((~(SHA3.B[20])) & SHA3.B[0]);
- A[16] = SHA3.B[16] ^ ((~(SHA3.B[21])) & SHA3.B[1]);
- A[17] = SHA3.B[17] ^ ((~(SHA3.B[22])) & SHA3.B[2]);
- A[18] = SHA3.B[18] ^ ((~(SHA3.B[23])) & SHA3.B[3]);
- A[19] = SHA3.B[19] ^ ((~(SHA3.B[24])) & SHA3.B[4]);
-
- A[20] = SHA3.B[20] ^ ((~(SHA3.B[0])) & SHA3.B[5]);
- A[21] = SHA3.B[21] ^ ((~(SHA3.B[1])) & SHA3.B[6]);
- A[22] = SHA3.B[22] ^ ((~(SHA3.B[2])) & SHA3.B[7]);
- A[23] = SHA3.B[23] ^ ((~(SHA3.B[3])) & SHA3.B[8]);
- A[24] = SHA3.B[24] ^ ((~(SHA3.B[4])) & SHA3.B[9]);
-
- /* ι step */
- A[0] ^= rc;
- }
-
-
- /**
- * Perform Keccak-f function
- *
- * @param A The current state
- */
- private static void keccakF(long[] A)
- {
- if (SHA3.nr == 24)
- {
- SHA3.keccakFRound(A, 0x0000000000000001L);
- SHA3.keccakFRound(A, 0x0000000000008082L);
- SHA3.keccakFRound(A, 0x800000000000808AL);
- SHA3.keccakFRound(A, 0x8000000080008000L);
- SHA3.keccakFRound(A, 0x000000000000808BL);
- SHA3.keccakFRound(A, 0x0000000080000001L);
- SHA3.keccakFRound(A, 0x8000000080008081L);
- SHA3.keccakFRound(A, 0x8000000000008009L);
- SHA3.keccakFRound(A, 0x000000000000008AL);
- SHA3.keccakFRound(A, 0x0000000000000088L);
- SHA3.keccakFRound(A, 0x0000000080008009L);
- SHA3.keccakFRound(A, 0x000000008000000AL);
- SHA3.keccakFRound(A, 0x000000008000808BL);
- SHA3.keccakFRound(A, 0x800000000000008BL);
- SHA3.keccakFRound(A, 0x8000000000008089L);
- SHA3.keccakFRound(A, 0x8000000000008003L);
- SHA3.keccakFRound(A, 0x8000000000008002L);
- SHA3.keccakFRound(A, 0x8000000000000080L);
- SHA3.keccakFRound(A, 0x000000000000800AL);
- SHA3.keccakFRound(A, 0x800000008000000AL);
- SHA3.keccakFRound(A, 0x8000000080008081L);
- SHA3.keccakFRound(A, 0x8000000000008080L);
- SHA3.keccakFRound(A, 0x0000000080000001L);
- SHA3.keccakFRound(A, 0x8000000080008008L);
- }
- else
- for (int i = 0; i < SHA3.nr; i++)
- SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod);
- }
-
-
- /**
- * Convert a chunk of byte:s to a word
- *
- * @param message The message
- * @param rr Bitrate in bytes
- * @param ww Word size in bytes
- * @param off The offset in the message
- * @return Lane
- */
- private static long toLane(byte[] message, int rr, int ww, int off)
- {
- long rc = 0;
- int n = Math.min(message.length, rr);
- for (int i = off + ww - 1; i >= off; i--)
- rc = (rc << 8) | ((i < n) ? (long)(message[i] & 255) : 0L);
- return rc;
- }
-
-
- /**
- * Convert a chunk of byte:s to a 64-bit word
- *
- * @param message The message
- * @param rr Bitrate in bytes
- * @param off The offset in the message
- * @return Lane
- */
- private static long toLane64(byte[] message, int rr, int off)
- {
- int n = Math.min(message.length, rr);
- return ((off + 7 < n) ? ((long)(message[off + 7] & 255) << 56) : 0L) |
- ((off + 6 < n) ? ((long)(message[off + 6] & 255) << 48) : 0L) |
- ((off + 5 < n) ? ((long)(message[off + 5] & 255) << 40) : 0L) |
- ((off + 4 < n) ? ((long)(message[off + 4] & 255) << 32) : 0L) |
- ((off + 3 < n) ? ((long)(message[off + 3] & 255) << 24) : 0L) |
- ((off + 2 < n) ? ((long)(message[off + 2] & 255) << 16) : 0L) |
- ((off + 1 < n) ? ((long)(message[off + 1] & 255) << 8) : 0L) |
- ((off < n) ? ((long)(message[off] & 255)) : 0L);
- }
-
-
- /**
- * pad 10*1
- *
- * @param msg The message to pad
- * @parm len The length of the message
- * @param r The bitrate
- * @return The message padded
- */
- private static byte[] pad10star1(byte[] msg, int len, int r)
- {
- int nrf = len >> 3;
- int nbrf = len & 7;
- int ll = len % r;
-
- byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)));
-
- byte[] message;
- if ((r - 8 <= ll) && (ll <= r - 2))
- {
- message = new byte[len = nrf + 1];
- message[nrf] = (byte)(b ^ 128);
- }
- else
- {
- len = (nrf + 1) << 3;
- len = ((len - (len % r) + (r - 8)) >> 3) + 1;
- message = new byte[len];
- message[nrf] = b;
- //for (long i = nrf + 1; i < len; i++)
- // message[i + nrf] = 0;
- message[len - 1] = -128;
- }
- for (int i = 0; i < nrf; i++)
- message[i] = msg[i];
-
- return message;
- }
-
-
- /**
- * Initialise Keccak sponge
- *
- * @param r The bitrate
- * @param c The capacity
- * @param n The output size
- */
- public static void initialise(int r, int c, int n)
- {
- SHA3.r = r;
- SHA3.c = c;
- SHA3.n = n;
- SHA3.b = r + c;
- SHA3.w = SHA3.b / 25;
- SHA3.l = SHA3.lb(SHA3.w);
- SHA3.nr = 12 + (SHA3.l << 1);
- SHA3.wmod = (1L << SHA3.w) - 1L;
- SHA3.S = new long[25];
- SHA3.M = new byte[(SHA3.r * SHA3.b) >> 2];
- SHA3.mptr = 0;
- }
-
-
- /**
- * Absorb the more of the message message to the Keccak sponge
- *
- * @param msg The partial message
- */
- public static void update(byte[] msg)
- {
- update(msg, msg.length);
- }
-
-
- /**
- * Absorb the more of the message message to the Keccak sponge
- *
- * @param msg The partial message
- * @param msglen The length of the partial message
- */
- public static void update(byte[] msg, int msglen)
- {
- int rr = SHA3.r >> 3;
- int ww = SHA3.w >> 3;
-
- if (SHA3.mptr + msglen > SHA3.M.length)
- System.arraycopy(SHA3.M, 0, SHA3.M = new byte[(SHA3.M.length + msglen) << 1], 0, SHA3.mptr);
- System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen);
- int len = SHA3.mptr += msglen;
- len -= len % ((SHA3.r * SHA3.b) >> 3);
- byte[] message;
- System.arraycopy(SHA3.M, 0, message = new byte[len], 0, len);
- System.arraycopy(SHA3.M, len, SHA3.M, 0, SHA3.mptr -= len);
-
- /* Absorbing phase */
- if (ww == 8)
- for (int i = 0; i < len; i += rr)
- {
- SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0);
- SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8);
- SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16);
- SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24);
- SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32);
- SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40);
- SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48);
- SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56);
- SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64);
- SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72);
- SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80);
- SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88);
- SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96);
- SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104);
- SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112);
- SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120);
- SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128);
- SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136);
- SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144);
- SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152);
- SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160);
- SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168);
- SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176);
- SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184);
- SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192);
- SHA3.keccakF(SHA3.S);
- }
- else
- for (int i = 0; i < len; i += rr)
- {
- SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 );
- SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w);
- SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w);
- SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w);
- SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w);
- SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w);
- SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w);
- SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w);
- SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w);
- SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w);
- SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w);
- SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w);
- SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w);
- SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w);
- SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w);
- SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w);
- SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w);
- SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w);
- SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w);
- SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w);
- SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w);
- SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w);
- SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w);
- SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w);
- SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w);
- SHA3.keccakF(SHA3.S);
- }
- }
-
-
- /**
- * Squeeze the Keccak sponge
- */
- public static byte[] digest()
- {
- return digest(null);
- }
-
-
- /**
- * Absorb the last part of the message and squeeze the Keccak sponge
- *
- * @param msg The rest of the message
- */
- public static byte[] digest(byte[] msg)
- {
- return digest(msg, msg == null ? 0 : msg.length);
- }
-
-
- /**
- * Absorb the last part of the message and squeeze the Keccak sponge
- *
- * @param msg The rest of the message
- * @param msglen The length of the partial message
- */
- public static byte[] digest(byte[] msg, int msglen)
- {
- byte[] message;
- if ((msg == null) || (msglen == 0))
- message = SHA3.pad10star1(SHA3.M, SHA3.mptr, SHA3.r);
- else
- {
- if (SHA3.mptr + msglen > SHA3.M.length)
- System.arraycopy(SHA3.M, 0, SHA3.M = new byte[SHA3.M.length + msglen], 0, SHA3.mptr);
- System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msglen);
- message = SHA3.pad10star1(SHA3.M, SHA3.mptr + msglen, SHA3.r);
- }
- SHA3.M = null;
- int len = message.length;
- byte[] rc = new byte[(SHA3.n + 7) >> 3];
- int ptr = 0;
-
- int rr = SHA3.r >> 3;
- int nn = SHA3.n >> 3;
- int ww = SHA3.w >> 3;
-
- /* Absorbing phase */
- if (ww == 8)
- for (int i = 0; i < len; i += rr)
- {
- SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0);
- SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 8);
- SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 16);
- SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 24);
- SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 32);
- SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 40);
- SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48);
- SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 56);
- SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 64);
- SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 72);
- SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 80);
- SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 88);
- SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96);
- SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 104);
- SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 112);
- SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 120);
- SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 128);
- SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 136);
- SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144);
- SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 152);
- SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 160);
- SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 168);
- SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 176);
- SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 184);
- SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192);
- SHA3.keccakF(SHA3.S);
- }
- else
- for (int i = 0; i < len; i += rr)
- {
- SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, i + 0 );
- SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, i + w);
- SHA3.S[10] ^= SHA3.toLane(message, rr, ww, i + 2 * w);
- SHA3.S[15] ^= SHA3.toLane(message, rr, ww, i + 3 * w);
- SHA3.S[20] ^= SHA3.toLane(message, rr, ww, i + 4 * w);
- SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, i + 5 * w);
- SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, i + 6 * w);
- SHA3.S[11] ^= SHA3.toLane(message, rr, ww, i + 7 * w);
- SHA3.S[16] ^= SHA3.toLane(message, rr, ww, i + 8 * w);
- SHA3.S[21] ^= SHA3.toLane(message, rr, ww, i + 9 * w);
- SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, i + 10 * w);
- SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, i + 11 * w);
- SHA3.S[12] ^= SHA3.toLane(message, rr, ww, i + 12 * w);
- SHA3.S[17] ^= SHA3.toLane(message, rr, ww, i + 13 * w);
- SHA3.S[22] ^= SHA3.toLane(message, rr, ww, i + 14 * w);
- SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, i + 15 * w);
- SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, i + 16 * w);
- SHA3.S[13] ^= SHA3.toLane(message, rr, ww, i + 17 * w);
- SHA3.S[18] ^= SHA3.toLane(message, rr, ww, i + 18 * w);
- SHA3.S[23] ^= SHA3.toLane(message, rr, ww, i + 19 * w);
- SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, i + 20 * w);
- SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, i + 21 * w);
- SHA3.S[14] ^= SHA3.toLane(message, rr, ww, i + 22 * w);
- SHA3.S[19] ^= SHA3.toLane(message, rr, ww, i + 23 * w);
- SHA3.S[24] ^= SHA3.toLane(message, rr, ww, i + 24 * w);
- SHA3.keccakF(SHA3.S);
- }
-
- /* Squeezing phase */
- int olen = SHA3.n;
- int j = 0;
- int ni = Math.min(25, rr);
- while (olen > 0)
- {
- int i = 0;
- while ((i < ni) && (j < nn))
- {
- long v = SHA3.S[(i % 5) * 5 + i / 5];
- for (int _ = 0; _ < ww; _++)
- {
- if (j < nn)
- {
- rc[ptr] = (byte)v;
- ptr += 1;
- }
- v >>= 8;
- j += 1;
- }
- i += 1;
- }
- olen -= SHA3.r;
- if (olen > 0)
- SHA3.keccakF(S);
- }
- return rc;
- }
-
-}